Priority Research Directions in Tumor-Targeted Boron Delivery for Boron Neutron Capture Therapy
https://doi.org/10.37174/2587-7593-2025-8-3-27-34
Abstract
The primary obstacle to the widespread clinical implementation of Boron Neutron Capture Therapy (BNCT) for malignant tumors is the lack of highly efficient tumor-targeted boron delivery agents. Clinically approved compounds – boronophenylalanine (BPA) and sodium borocaptate (BSH) – exhibit significant limitations, necessitating the development of novel boron pharmaceuticals. This review surveys current research directions in boron-containing drug development for BNCT, focusing on preclinical studies in laboratory animals. Three principal strategies are analyzed: targeted agents (antibody- or ligand-based constructs targeting tumor receptors: EGFR, VEGFR, etc.); natural and unnatural boronated amino acids; nanocarrier-based systems – boron-loaded nanoparticles and liposomes. Effective BNCT agents must demonstrate selective tumor accumulation, achieving intratumoral boron concentrations ≥20 μg/g cancer tissue during neutron irradiation while minimizing accumulation in healthy tissues. We critically evaluate the boron delivery efficacy, the prospects, and limitations of each approach. Current evidence indicates that metabolismdriven delivery systems, such as unnatural cyclic amino acids and transferrin conjugates, show the greatest therapeutic potential. Conversely, receptor-mediated agents (ligands/antibodies) have yet to demonstrate sufficient tumor boron accumulation for clinical BNCT efficacy.
About the Authors
N. N. SychevaGermany
280 Neuenheimer Feld, Heidelberg 69120
Competing Interests:
Not declared
A. A. Lipengolts
Russian Federation
Aleksey Lipengolts, +7 (903) 173-88-77
24 Kashirskoye Shosse, Moscow, 115478
31 Kashirskoe Shosse, Moscow 115409
31 Leninsky prospect, Moscow 119991
Competing Interests:
Not declared
V. A. Skribitsky
Russian Federation
24 Kashirskoye Shosse, Moscow, 115478
31 Kashirskoe Shosse, Moscow 115409
31 Leninsky prospect, Moscow 119991
Competing Interests:
Not declared
K. E. Shpakova
Russian Federation
24 Kashirskoye Shosse, Moscow, 115478
31 Kashirskoe Shosse, Moscow 115409
31 Leninsky prospect, Moscow 119991
Competing Interests:
Not declared
Yu. A. Finogenova
Russian Federation
24 Kashirskoye Shosse, Moscow, 115478
31 Leninsky prospect, Moscow 119991
Competing Interests:
Not declared
A. V. Smirnova
Russian Federation
24 Kashirskoye Shosse, Moscow, 115478
86 Shosse Entuziastov, Moscow 111123
Competing Interests:
Not declared
A. A. Kasianov
Russian Federation
24 Kashirskoye Shosse, Moscow, Russia 115478
31 Kashirskoe Shosse, Moscow 115409
Competing Interests:
Not declared
E. Yu. Grigorieva
Russian Federation
24 Kashirskoye Shosse, Moscow, 115478
Competing Interests:
Not declared
References
1. Lipengolts AA, Finogenova YA, Skribitsky VA, et al. Binary technologies of malignant tumors radiotherapy. J Phys Conf Ser. 2021;2058(1):012039. https://doi.org/10.1088/1742-6596/2058/1/012039
2. Sheino IN, Izhevskiy PV, Lipengolts AA, et al. Development of binary technologies of radiotherapy of malignant neoplasms: condition and problems. Bulletin of Siberian Medicine. 2017;16(3):192-209. (In Russ.). https://doi.org/10.20538/1682-0363-2017-3-192-209
3. Fukuda H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells. 2021;10(11):2881. https://doi.org/10.3390/cells10112881
4. Lipengolts AA, Grigorieva EY, Ivanov SM, et al. Current Status of Clinical Neutron Capture Therapy. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(1):15-18. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-1-15-18
5. Taskaev SY. Boron neutron capture therapy. Phys At Nucl. 2021;84(2):207-11. https://doi.org/10.1134/S106377882101021X
6. Matsumura A, Asano T, Hirose K, et al. Initiatives toward clin‑ ical boron neutron capture therapy in Japan. Cancer Biother Radiopharm. 2023;38(3):201-7. https://doi.org/10.1089/cbr.2022.0056
7. Barth RF, Mi P, Yang W. Boron delivery agents for neutron cap‑ ture therapy of cancer. Cancer Commun. 2018;38(1):35. https://doi.org/10.1186/s40880-018-0299-7
8. Barth RF, Gupta N, Kawabata S. Evaluation of sodium boro‑ captate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of can‑ cer: an update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun. 2024;44(8):893-909. https://doi.org/10.1002/cac2.12582.
9. Yang W, Barth RF, Wu G, et al. Boron neutron capture ther‑ apy of EGFR or EGFRvIII positive gliomas using either bo‑ ronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiat Isot. 2009;67(7-8):S328-S331. https://doi.org/10.1016/j.apradiso.2009.03.030
10. Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA. 1994;91(6):2076-80. https://doi.org/10.1073/pnas.91.6.2076
11. Sun T, Li Y, Huang Y, et al. Targeting glioma stem cells enhanc‑ es anti-tumor effect of boron neutron capture therapy. Onco‑ target. 2016;7(28):43095-108. https://doi.org/10.18632/oncotarget.9355
12. Alberti D, Michelotti A, Lanfranco A, et al. In vitro and in vivo BNCT investigations using a carborane containing sulfona‑ mide targeting CAIX epitopes on malignant pleural mesothe‑ lioma and breast cancer cells. Sci Rep. 2020;10:19274. https://doi.org/10.1038/s41598-020-76370-1
13. Trivillin VA, Garabalino MA, Colombo LL, et al. Biodistribu‑ tion of the boron carriers boronophenylalanine (BPA) and/ or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases. Applied Radiation and Isotopes. 2014;88:94-8. https://doi.org/10.1016/j.apradiso.2013.11.115
14. Hübner KF, Thie JA, Smith GT, et al. Positron Emission Tomog‑ raphy (PET) with 1-Aminocyclobutane-1-[11C]carboxylic Acid (1-[11C]-ACBC) for detecting recurrent brain tumors. Clinical Positron Imaging. 1998;1(3):165-73.
15. Barth RF, Kabalka GW, Yang W, et al. Evaluation of unnatu‑ ral cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Applied Radiation and Isotopes. 2014;88:38-42. https://doi.org/10.1016/j.apradiso.2013.11.133
16. Futamura G, Kawabata S, Nonoguchi N, et al. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiation Oncology. 2017;12:26. https://doi.org/10.1186/s13014-017-0765-4
17. Nakamura H, Koganei H, Miyoshi T, et al. Antitumor effect of boron nitride nanotubes in combination with thermal neu‑ tron irradiation on BNCT. Bioorganic & Medicinal Chemistry Letters. 2015;25(2):172-4. https://doi.org/10.1016/j.bmcl.2014.12.005
18. Menichetti L, De Marchi D, Calucci L, et al. Boron nitride nanotubes for boron neutron capture therapy as contrast agents in magnetic resonance imaging at 3T. Applied Radia‑ tion and Isotopes. 2011;69(12):1725-7. https://doi.org/10.1016/j.apradiso.2011.02.032
19. Sumitani S, Oishi M, Yaguchi T, et al. Pharmacokinetics of core-polymerized, boron-conjugated micelles designed for boron neutron capture therapy for cancer. Biomaterials. 2012;33(13):3568-77. https://doi.org/10.1016/j.biomaterials.2012.01.039
20. Zhang T, Li G, Li S, et al. Asialoglycoprotein receptor target‑ ed micelles containing carborane clusters for effective boron neutron capture therapy of hepatocellular carcinoma. Col‑ loids Surf B Biointerfaces. 2019;182:110397. https://doi.org/10.1016/j.colsurfb.2019.110397
21. Zhu Y, Lin Y, Zhu YZ, et al. Boron drug delivery via encapsulat‑ ed magnetic nanocomposites: a new approach for BNCT in cancer treatment. J Nanomater. 2010;2010(1):409320. https://doi.org/10.1155/2010/409320
22. Oleshkevich E, Morancho A, Saha A, et al. Combining mag‑ netic nanoparticles and icosahedral boron clusters in biocom‑ patible inorganic nanohybrids for cancer therapy. Nanomedi‑ cine. 2019;20:101986. https://doi.org/10.1016/j.nano.2019.03.008
23. Feiner IVJ, Pulagam KR, Gómez-Vallejo V, et al. Therapeutic pretargeting with gold nanoparticles as drug candidates for boron neutron capture therapy. Particle & Particle Systems Characterization. 2020;37(12):2000200. https://doi.org/10.1002/ppsc.202000200
24. Pulagam KR, Gona KB, Gómez-Vallejo V, et al. Gold nanopar‑ ticles as boron carriers for boron neutron capture therapy: synthesis, radiolabelling and in vivo evaluation. Molecules. 2019;24(19):3609. https://doi.org/10.3390/molecules24193609
25. Wu CY, Hsieh HH, Chang TY, et al. Development of MRI-de‑ tectable boron-containing gold nanoparticle-encapsulated biodegradable polymeric matrix for boron neutron capture therapy (BNCT). Int J Mol Sci. 2021;22(15):8050. https://doi.org/10.3390/ijms22158050
26. Wu CY, Lin JJ, Chang WY, et al. Development of theranostic ac‑ tive-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids Surf B Biointerfac‑ es. 2019;183:110387. https://doi.org/10.1016/j.colsurfb.2019.110387
27. Jain A, Jain SK. Advances in tumor targeted liposomes. Curr Med Chem. 2018;18(1):44-57. https://doi.org/10.2174/1566524018666180416101522
28. Tachikawa S, Miyoshi T, Koganei H, et al. Spermidinium clo‑ so-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy. Chem Com‑ mun. 2014;50(82):12325-8. https://doi.org/10.1039/C4CC04344H
29. Lee W, Sarkar S, Ahn H, et al. PEGylated liposome encapsulat‑ ing nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem Biophys Res Commun. 2020;522(3):669-75. https://doi.org/10.1016/j.bbrc.2019.11.144
30. Li J, Sun Q, Lu C, et al. Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun. 2022;13(1):2143. https://doi.org/10.1038/s41467-022-29780-w
31. Maruyama K, Ishida O, Kasaoka S, et al. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-cap‑ ture therapy (BNCT). J Control Release. 2004;98(2):195-207. https://doi.org/10.1016/j.jconrel.2004.04.018
32. Doi A, Kawabata S, Iida K, et al. Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transfer‑ rin-PEG liposomes: a modality for boron neutron capture therapy. J Neurooncol. 2008;87:287-94. https://doi.org/10.1007/s11060-008-9522-8
33. Koganei H, Ueno M, Tachikawa S, et al. Development of high boron content liposomes and their promising antitumor ef‑ fect for neutron capture therapy of cancers. Bioconjug Chem. 2013;24(1):124-32. https://doi.org/10.1021/bc300527n
34. Kueffer PJ, Maitz CA, Khan AA, et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors follow‑ ing selective delivery of boron by rationally designed lipos‑ omes. Proc Natl Acad Sci USA. 2013;110(16):6512-7. https://doi.org/10.1073/pnas.1303437110
35. Maitz CA, Khan AA, Kueffer PJ, et al. Validation and compar‑ ison of the therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes in multiple mu‑ rine tumor models. Transl Oncol. 2017;10(4):686-92. https://doi.org/10.1016/j.tranon.2017.05.003
Review
For citations:
Sycheva N.N., Lipengolts A.A., Skribitsky V.A., Shpakova K.E., Finogenova Yu.A., Smirnova A.V., Kasianov A.A., Grigorieva E.Yu. Priority Research Directions in Tumor-Targeted Boron Delivery for Boron Neutron Capture Therapy. Journal of oncology: diagnostic radiology and radiotherapy. 2025;8(3):27-34. (In Russ.) https://doi.org/10.37174/2587-7593-2025-8-3-27-34