Antitumor Efficacy of Contrast Enhanced Radiotherapy
https://doi.org/10.37174/2587-7593-2018-1-4-82-91
Abstract
Increased efficacy of radiotherapy is one of the primary objectives of modern healthcare. Binary radiotherapy is one of the approaches that is used to reach this goal. This review focuses on contrast enhanced radiotherapy as one of the methods of binary radiotherapy. The principals and physics of this methods, as well as the primary findings of experiments currently done are discussed in this review. The results show the antitumor efficacy of this method and confirm the promise of this therapy as a treatment of malignant tumors.
About the Authors
V. N. KulakovRussian Federation
Moscow
A. A. Lipengolts
Russian Federation
Moscow
E. Yu. Grigorieva
Russian Federation
Moscow
N. L. Shimanovsky
Russian Federation
Moscow
References
1. Мухин К.Н. Экспериментальная ядерная физика. Т. 1. Физика атомного ядра. Ч. I. Свойства нуклонов, ядер и радиоактивных излучений. – М.: Энергоатомаздат. 1993. 376 с.
2. Cho S.H. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study // Phys. Med. Biol. 2005. Vol. 50. № 15. P. N163–N173.
3. Robar J.L., Riccio S.A, Martin M. A. Tumour dose enhancement using modified megavoltage photon beams and contrast media // Phys. Med. Biol. 2002. Vol. 47. № 14. P. 305.
4. Roeske J.C. et al. Characterization of the theoretical radiation dose enhancement from nanoparticles // Technol. Cancer Res. Treat. 2007. Vol. 6. № 5. P. 395–401.
5. Черепанов А.А. и соавт. Исследование увеличения энерговыделения в среде за счет присутствия тяжелого элемента с использованием дозиметра Фрике // Мед. физика. 2016. № 4 (72). P. 38–41.
6. Kreiner A.J. et al. Present status of accelerator-based BNCT // Reports Pract. Oncol. Radiother. Wielkopolskie Centrum Onkologii. 2016. Vol. 21. № 2. P. 95–101.
7. Karnas S.J. et al. Optimal photon energies for IUdR K-edge radiosensitization with filtered x-ray and radioisotope sources // Phys. Med. Biol. 1999. Vol. 44. № 10. P. 2537– 2549.
8. Hainfeld J.F. et al. Gold nanoparticle imaging and radiotherapy of brain tumors in mice // Nanomedicine. 2013. Vol. 8. № 10. P. 1601–1609.
9. Hainfeld J.F., Slatkin D.N., Smilowitz H.M. The use of gold nanoparticles to enhance radiotherapy in mice // Phys. Med. Biol. 2004. Vol. 49. № 18. P. N309–N315.
10. Townley H.E., Kim J., Dobson P.J. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles // Nanoscale. 2012. Vol. 4. № 16. P. 5043.
11. Biston M.-C. et al. Cure of fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-Rays // Cancer Res. 2004. Vol. 64. № 7. P. 2317–2323.
12. Rousseau J. et al. Enhanced survival and cure of F98 glioma bearing rats following intracerebral delivery of carboplatin in combination with photon irradiation // Clin. Cancer Res. 2007. Vol. 13. № 17. P. 5195–5201.
13. Dufort S. et al. The high radiosensitizing efficiency of a trace of gadolinium-based nanoparticles in tumors // Sci. Rep. 2016. Vol. 6. № 1. P. 29678.
14. Laster B.H., Thomlinson W.C., Fairchild R.G. Photon activation of iododeoxyuridine: biological efficacy of Auger electrons // Radiat. Res. 1993. Vol. 133. № 2. P. 219– 223.
15. Габуния Р.И., Колесникова Е.К. Компьютерная томография в клинической диагностике. – М.: Медицина. 1995.
16. Norman A., Adams F.H., Riley R.F. Cytogenetic effects of contrast media and triiodobenzoic acid derivatives in human lymphocytes // Radiology. 1978. Vol. 129. № 1. P. 199–203.
17. Adams F.H. et al. Effect of radiation and contrast media on chromosomes // Radiology. 1977. Vol. 124. № 3. P. 823–826.
18. Mello R.S. et al. Radiation dose enhancement in tumors with iodine // Med. Phys. 1983. Vol. 10. № 1. P. 75–78.
19. Matsudaira H., Ueno A.M., Furuno I. Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to γ rays // Radiat. Res. 1980. Vol. 84. № 1. P. 144–149.
20. Corde S. et al. Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds // Brit. J. Cancer. 2004. Vol. 91. № 3. P. 544–551.
21. Norman D. et al. Quantitative aspects of contrast enhancement in cranial computed tomography // Radiology. 1978. Vol. 129. № 3. P. 683–688.
22. Iwamoto K.S. et al. Radiation dose enhancement therapy with iodine in rabbit VX-2 brain tumors // Radiother. Oncol. 1987. Vol. 8. № 2. P. 161–170.
23. Iwamoto K.S. et al. The CT scanner as a therapy machine // Radiother. Oncol. 1990. Vol. 19. № 4. P. 337–343.
24. Norman A. et al. X-ray phototherapy for canine brain masses // Radiat. Oncol. Investig. 1997. Vol. 5. № 1. P. 8–14.
25. Даренская Н.Г. и соавт. Оценка эффективности фотон-захватной терапии экспериментальных опухолей // Мед. радиол. и радиац. безопасность. 2006. Т. 51. № 4. С. 5–11.
26. Черепанов А.А. и соавт. Увеличение противоопухолевого эффекта рентгеновского облучения при помощи гадолиний-содержащего препарата на примере мышей с трансплантированной меланомой B16F10 // Мед. физика. 2014. № 3. С. 66–69.
27. Le Duc G. et al. In vivo measurement of gadolinium concentration in a rat glioma model by monochromatic quantitative computed tomography // Invest. Radiol. 2004. Vol. 39. № 7. P. 385–393.
28. Lux F. et al. AGuIX R from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine // Brit. J. Radiol. 2018. № 4. P. 20180365.
29. Choi G.-H. et al. Photon activated therapy (PAT) using monochromatic synchrotron x-rays and iron oxide nanoparticles in a mouse tumor model: feasibility study of PAT for the treatment of superficial malignancy // Radiat. Oncol. 2012. Vol. 7. № 1. P. 184–190.
30. Goel R. et al. Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system // Nanomedicine. 2009. Vol. 4. № 4. P. 401–410.
31. Balogh L. et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models // Nanomedicine Nanotechnology, Biol. Med. 2007. Vol. 3. № 4. P. 281–296.
32. Hainfeld J.F. et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma // Phys. Med. Biol. 2010. Vol. 55. № 11. P. 3045–3059.
33. Jain S. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 79. № 2. P. 531–539.
34. Jain S., Hirst D., O’Sullivan J. Gold nanoparticles as novel agents for cancer therapy // Brit. J. Radiol. 2012. Vol. 85. № 1010. P. 101–113.
35. Butterworth K.T. et al. Variation of strand break yield for plasmid DNA Irradiated with high-Z metal nanoparticles // Radiat. Res. 2008. Vol. 387. № 3. P. 381–387.
Review
For citations:
Kulakov V.N., Lipengolts A.A., Grigorieva E.Yu., Shimanovsky N.L. Antitumor Efficacy of Contrast Enhanced Radiotherapy. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(4):82-91. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-4-82-91