Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

Proton Radiotherapy: Current Status and Future Prospects. Part 1. Physical and Technical Aspects

https://doi.org/10.37174/2587-7593-2018-1-4-14-33

Abstract

The work represents an analytical review of current status of proton therapy in the world and in Russia and advanced developments in the field of accelerator technology, dose delivery technology to target, methods of dose calculating. The main sections of the article are preceded by a brief description of the interactions of protons with the matter, which is then used to explain the distinctive features of proton therapy compared with other options of radiation treatment.

About the Authors

V. A. Klimanov
A.I. Burnazyan Federal Medical Biophysical Center; National Research Nuclear University MEPhI; M.V. Lomonosov Moscow State University
Russian Federation
Moscow


J. J. Galjautdinova
A.I. Burnazyan Federal Medical Biophysical Center
Russian Federation
Moscow


M. V. Zabelin
A.I. Burnazyan Federal Medical Biophysical Center
Russian Federation
Moscow


References

1. Janni J. F. Proton range energy tables, 1 keV–10 GeV Atomic Data // Nucl. Data Tables. 1982. Vol. 27. P. 147– 529.

2. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy variations as a function of biological endpoint, dose and linear energy transfer // Phys. Med. Biol. Vol. 59. 2014. P. R419–R472.

3. https://www.oncolink.org/cancer-treatment/protontherapy/overviews-of-proton-therapy/ocularmelanomaand-proton-therapy.

4. Damato B. Developments in the management of uveal melanoma // Clin. Exper. Ophthalmol. 2004. Vol. 32. P. 639–647.

5. Мицын Г.В., Ольшевский А.Г., Сыресин Е.М. Протонная терапия сегодня и завтра // Еженедельник ОИЯИ «Дубна». 2008. № 32.

6. Goitein G.P. Proton Radiation Therapy of Ocular Melanom. Teaching Course 2010 OPTIS PTCOG 49. 2010.

7. Noel G., Bollet M.A., Calugaru V. et al. Functional outcome of patients with benign meningioma treated by 3D conformal irradiation with a combination of photons and protons // Int. J. Radiat. Oncol. Biol. Phys. 2005.Vol. 62. № 5. P. 1412–1422.

8. Wenkel E., Thornton A.F., Finkelstein D. et al. Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2000. Vol. 48. № 5. P. 1363–1370.

9. Vernimmen L.K. et al. Stereotactic proton beam therapy of skull base meningiomas // Int. J. Radiat. Oncol. Biol. Phys. 2001. Vol. 49. № 1. P. 99–105.

10. Romb B., Vennarini S., Vinante L. et al. Proton radiotherapy for pediatric tumors: review of first clinical results // Ital. J. Pediatr. 2014. № 40. P. 74–78.

11. Robison L.L., Armstrong G.T., Boice J.D. et al. The childhood cancer survivor study: a National Cancer Institute-supported resource for outcome and intervention research // J. Clin. Oncol. 2009. Vol. 27. № 14. P. 2308–2318.

12. Ishida Y., Sakamoto N., Kamibeppu K. et al. Late effects and quality of life of childhood cancer survivors: part 2: impact of radiotherapy // Int. J. Hematol. 2010. Vol. 92. № 1. P. 95–104.

13. Fischer E.G., Welch K., Shillito J. et al. Craniopharyngioma in children: long-term effects of conservative surgical procedures combined with radiation therapy // J. Neurosurg. 1990. Vol. 73. № 4. P. 534–540.

14. Schell M.J., McHaney V.A. et al. Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation // J. Clin. Oncol. 1989. Vol. 7. № 6. P. 754–760. Pubmed. 2715805.

15. Adan L., Trivin C. et al. GH deficiency caused by cranial irradiation during childhood: factors and markers in young adults // J. Clin. Endocrinol. & Metabolism. 2001. Vol. 86. № 1. P. 5245–5251. Pubmed 11701685.

16. Schell M.J., McHaney V.A. et al. Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation // J. Clin. Oncol. 1989. Vol. 7. № 6. P. 754-760. Pubmed 2715805/

17. Dores G.M., Metayer C. et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years // J. Clin. Oncol. 2002. Vol. 20. № 16. P. 3484–3494. Pubmed 12177110.

18. Mulhern R.K., Palmer S.L. Neurocognitive late effects in pediatric cancer // Current Problems in Cancer. 2003. Vol. 27. № 4. P. 177–197. Pubmed 12855950.

19. Cotter S.E., McBride S.M., Yock T.I. Proton radiotherapy for solid tumors of childhood // Technol. Cancer Res. Treat. 2012. Vol. 11. № 3. P. 267–278.

20. Clarke M., Collins R., Darby S. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials // Lancet. 2005. Vol. 366. № 9503. P. 2087–2106.

21. Li J.S., Freedman G.M., Price R. et al. Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer // Med. Phys. 2004. Vol. 31. № 5. P. 1023–1031.

22. Seidman A., Hudis C., Pierri M.K. et al. Cardiac dysfunction in the trastuzumab clinical trials experience // Clin. Oncol. 2002. Vol. 20. № 5. P. 1215–1221.

23. Mantini G., Smaniotto D., Balducci M. Radiationinduced cardiovascular disease: impact of dose and volume // Rays. 2005. Vol. 30. № 2. P. 157–168.

24. Bhatnagar A.K., Brandner E., Sonnik D. et al. Intensitymodulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation: initial report // Cancer J. 2004. Vol. 10. P. 381–385.

25. Hall E.J. Intensity-modulated radiation therapy, protons, and the risk of second cancers // Int. J. Radiat. Oncol. Biol. Phys. 2006. Vol. 65. № 1. P. 1–7.

26. Burman C., Chui C.S. et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for largescale implementation for the treatment of carcinoma of the prostate // Int. J. Radiat. Oncol. Biol. Phys. 1997. Vol. 39. № 4. P. 863–873.

27. Shipley W.U. et al. Proton radiation as boost therapy for localized prostatic carcinoma // JAMA. 1979. Vol. 241. № 18. P. 1912–1915.

28. Sejpal S., Komaki R., Tsao A. et al. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer // Cancer. 2011. Vol. 117. № 13. P. 3004–3013.

29. Bradley J.D., Paulus R., Komaki R. et al. A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617 // Lancet Oncol. 2015. Vol. 16. № 2. P. 187–199.

30. Goitein M., Cox J. Should randomized clinical trial be required for proton radiotherapy? // J. Clin. Oncol. 2008. Vol. 26. P. 175–176.

31. Suit H. et al. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No // Radiother. Oncol. 2008. Vol. 86. P. 148– 153.

32. Cotter S.E., Herrup D.A., Friedmann A. et al. Proton radiotherapy for pediatric bladder/prostate rhabdomyosarcoma: clinical outcomes and dosimetry compared to intensity modulated radiation therapy // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81. P. 1367– 1373.

33. Brodin N.P., Munck A.F., Rosensch P. et al. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma // Acta Oncol. 2011. Vol. 50. P. 806–816.


Review

For citations:


Klimanov V.A., Galjautdinova J.J., Zabelin M.V. Proton Radiotherapy: Current Status and Future Prospects. Part 1. Physical and Technical Aspects. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(4):14-33. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-4-14-33

Views: 545


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)