Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

Water-Soluble Complexes of Methylpyro-Phaeophorbide-а with Carrier Proteins for Photodinamic Therapy

https://doi.org/10.37174/2587-7593-2018-1-1-75-79

Abstract

Practical application of photosensitizers for photodynamic therapy of tumors is limited with insufficient solubility in water and hepatic tropism of tetrapyrrole dyes. The work pursued study of possibility of using a model photosensitizer methylpyro-phaeophorbide α bearing a free carboxylic moiety (MPPPa) in complexes with artificial proteins derived from human alpha-fetoprotein ApE1 and ApE2. Properties of ApE1-MPPPa and ApE2-MPPPa complexes were compared with properties of MPPPa complex with serum albumin. A bathochromic shift of fluorescence maximum of MPPPa in complexes with ApE1 and ApE2 was found in comparison with free MPPPa. This shift gives an evidence of a tight contact between the dye and aromatic amino acids in the carrier proteins. This shift allows expecting a high photochemical activity in the complex photosensitizer in vivo. A high stability of non-covalent ApE1-MPPPa and ApE2-MPPPa complexes substantially exceeding stability of MPPPa complex with serum albumin was demonstrated. Such stability allows preparative purification of these non-covalent complexes with dialysis and/or chromatography.

About the Authors

N. V. Pozdniakova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation
Moscow


D. V. Belykh
Institute of Chemistry of the Komi Scientific Center, Urals Branch of RAS
Russian Federation
Syktyvkar


I. S. Khudyaeva
Institute of Chemistry of the Komi Scientific Center, Urals Branch of RAS
Russian Federation
Syktyvkar


A. B. Shevelev
N.M. Emanuel Institute of Biochemical Physics of RAS
Russian Federation
Moscow


References

1. Megna M., Fabbrocini G., Marasca C., Monfrecola G. Photodynamic therapy and skin appendage disorders: A Review // Skin Appendage Disord. 2017. Vol. 2. № 3–4. P. 166–176. doi: 10.1159/000453273. Epub 2016 Dec 8. Review.

2. Dehghan Esmatabadi M.J., Bozorgmehr A., Hajjari S.N. et al. Review of new insights into antimicrobial agents. // Cell Mol. Biol. (Noisy-le-grand). 2017. Vol. 28. № 63. № 2. P. 40-48. doi: 10.14715/cmb/2017.63.2.6.

3. Zhiyentayev T.M., Boltaev U.T., Solov’eva A.B. et al. Complexes of chlorine with pluronics and polyvinylpyrrolidone: structure and photodynamic activity in cell culture // Photochem. Photobiol. 2014. Vol. 90. № 1. P. 171–182. doi: 10.1111/php.12181. Epub 2013 Nov 28.

4. Mishra P.P., Patel S., Datta A. Effect of increased hydrophobicity on the binding of two model amphiphilic chlorine drugs for photodynamic therapy with blood plasma and its components // J. Phys. Chem. B. 2006. Vol. 110. P. 21238–21244.

5. Ashur I. et al. Photocatalytic generation of oxygen radicals by the water-soluble bacteriochlorophyll derivative WST11, noncovalently bound to serum albumin // J. Phys. Chem. A. 2009. Vol. 113. № 28. P. 8027–8037.

6. Pak V. Patent US 8071547 B2. 2011.

7. Костюков А.А., Позднякова Н.В., Шевелев А.Б. и соавт. Комплексы альфа-фетопротеина и сывороточного альбумина с бискарбоцианиновым красителем // Химия высоких энергий. 2017. Т. 51. № 3. С.248–250.

8. Pozdniakova N.V., Gorokhovets N.V., Gukasova N.V. et al. New protein vector ApE1 for targeted delivery of anticancer drugs // J. Biomed. Biotechnol. 2012. Vol. 2012. PMC 3357585.

9. Osuka A., Wada U., Shinoda S. // Tetrahedron. 1996. Vol. 52. № 12. Р. 4311.

10. Тулаева Л.А., Белых Д.В., Яковлева Н.М. и соавт. Синтез и исследование производных хлорофилла, содержащих свободную карбоксильную группу // Известия вузов. Химия и химическая технология. 2006. Т. 49. № 4. С. 82–87.

11. Laemli U.K. // Nature. 1970. Vol. 227. P. 680–688.

12. Vincent S.G., Cunningham P.R., Stephens N.L. et al. Quantitative densitometry of proteins stained with coomassie blue using a HewlettPackard scanjet scanner and Scanplot software // Electrophoresis. 1997. Vol. 18. № 1. P. 67–71.

13. Phillips D. // Prog. React. Kinetics. 1997. Vol. 22. P. 175–300.

14. Giovannetti R. The Use of spectrophotometry UV-Vis for the study of porphyrins // In: Nanotechnology and Nanomaterials. Ed. by Jamal Uddin. 2012.

15. Irving C.S., Byers G.W., Leermakers P.A. Spectroscopic model for the visual pigments. Influence of microenvironmental polarizability // Biochemistry. 1970. Vol. 9. № 4. P. 858–864.

16. Syrbu S., Semeikin A., Lyubimova T., Stuzhin P. Unsymmetrical meso-phenyl substituted octamethyl porphyrins: synthesis by mixed condensation and chromatographic separation // First Internat. Conf. Porphyrins and Phthalocyanines (ICPP-1). Dijon. France. 2000. P. 576.

17. Komagoe K., Katsu T. Porphyrin-induced photogeneration of hydrogen peroxide determined using the luminol chemiluminescence method in aqueous solution: a structureactivity relationship study related to the aggregation of porphyrin // Anal. Sci. 2006. Vol. 22. № 2. P. 255–258.


Review

For citations:


Pozdniakova N.V., Belykh D.V., Khudyaeva I.S., Shevelev A.B. Water-Soluble Complexes of Methylpyro-Phaeophorbide-а with Carrier Proteins for Photodinamic Therapy. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(1):75-79. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-1-75-79

Views: 437


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)