Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

Radiomic Analysis in Hepatocellular Carcinoma: Prospects and Clinical Benefits (Review)

https://doi.org/10.37174/2587-7593-2025-8-3-78-86

Abstract

Introduction: Hepatocellular carcinoma (HCC) is associated with high mortality due to challenges in early diagnosis, the subjectivity of imaging assessments, and the lack of reliable, non-invasive methods for predicting tumor aggressiveness and treatment response.
Purpose: To evaluate the potential and evidence base of radiomic image analysis in addressing key clinical challenges in HCC.
Materials and methods: A review of current scientific literature, including Russian and international studies from 2023 to 2025, was conducted. The methodology of radiomics and its effectiveness were analyzed for the following applications: differential diagnosis of HCC, prediction of microvascular invasion (MVI), and evaluation or prediction of the effectiveness of transarterial chemoembolization (TACE) and radiofrequency ablation (RFA).
Results: Radiomic models demonstrated high accuracy (with sensitivity up to 96 %) in the differential diagnosis of HCC. The integration of 3D radiomic features with clinical and laboratory data enabled the prediction of MVI, achieving sensitivity rates of 76–82 % and specificity of 82–85 %. Combined clinical–radiomic models showed strong performance in predicting response to TACE (AUC up to 0.92) and RFA (AUC up to 0.87), as well as in assessing recurrence risk—outperforming traditional approaches.
Conclusion: Radiomic analysis is a promising non-invasive tool for assessing HCC aggressiveness and guiding treatment selection. It outperforms conventional imaging in predicting MVI and therapeutic response to local treatments such as TACE and RFA.

About the Authors

E. B. Kodzoeva
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Elina B. Kodzoeva, +79856472554 

24 Kashirskoye Shosse, Moscow, 115478 


Competing Interests:

Not declared



K. A. Romanova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24 Kashirskoye Shosse, Moscow, 115478 


Competing Interests:

Not declared



B. M. Medvedeva
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24 Kashirskoye Shosse, Moscow, 115478 


Competing Interests:

Not declared



N. Ts. Drobot
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24 Kashirskoye Shosse, Moscow, 115478 


Competing Interests:

Not declared



References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. https://doi.org/10.3322/caac.21492. PMID: 30207593.

2. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6. https://doi.org/10.1038/s41572-020-00240-3. PMID: 33479224.

3. Singal AG, Kanwal F, Llovet JM. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat Rev Clin Oncol. 2023. https://doi.org/10.1038/s41571-023-00825-3. PMID: 37884736.

4. Jiang Y, Han Q, Zhao H, et al. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma. 2021;8:435-50. https://doi.org/10.2147/JHC.S307962. PMID: 34046368.

5. D’Ambrosio R, Lampertico P. Is it time to refine HCC surveillance strategies in HCV cured patients? Hepatology. 2022;76(1):9-11. https://doi.org/10.1002/hep.32430. PMID: 35218241.

6. Banini BA, Sanyal AJ. Chapter Four — NAFLD-related HCC. Adv Cancer Res. 2021;149:143-69. https://doi.org/10.1016/bs.acr.2020.11.001. PMID: 33579423.

7. Kim DY. Changing etiology and epidemiology of hepatocellular carcinoma: Asia and worldwide. Journal of Liver Cancer. 2024;24(1):62-70. https://doi.org/10.17998/jlc.2024.03.13.PMID: 38523466.

8. Matsumoto MM, Mouli S, Saxena P, et al. Comparing real world, personalized, multidisciplinary tumor board recommendations with BCLC algorithm: 321-patient analysis. Cardiovasc Intervent Radiol. 2021;44:1070-80. https://doi.org/10.1007/s00270-021-02810-8. PMID: 33825060.

9. American College of Radiology (US). LI-RADS: Liver Imaging Reporting and Data System [Internet]. Reston (VA): American College of Radiology; c2024 [updated 2024 May]. Available from: https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Reporting-and-Data-Systems/LI-RADS.

10. Dumbadze, A Tavartkiladze, A Kutateladze, et al. Multi-modal assessment of LI-RADS 3 and 4 lesions: Integrating serum biomarkers, liquid biopsy, and imaging for early hepatocellular carcinoma detection and management. JJ Oncol Clin Res. 2024;5:1-25. https://doi.org/10.17303/jocr.2024.5.201.

11. Liang Y, Xu F, Guo Y, et al. Diagnostic performance of LI-RADS for MRI and CT detection of HCC: A systematic review and diagnostic meta-analysis. Eur J Radiol. 2021;134:1094-04. https://doi.org/10.1016/j.ejrad.2020.109404. PMID: 33276248.

12. Huang EP, O’Connor JPB, McShane LM, et al. Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol. 2023;20(2):69-82. https://doi.org/10.1038/s41571-022-00707-0. PMID: 36443594.

13. Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2022;19(2):132-46. https://doi.org/10.1038/s41571-021-00560-7. PMID: 34663898.

14. Miranda J, Horvat N, Fonseca GM, et al. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol. 2023;29(1):43-60. https://doi.org/10.3748/wjg.v29.i1.43. PMID: 36683711.

15. Nie P, Wang N, Pang J, et al. CT-based radiomics nomogram: a potential tool for differentiating hepatocellular adenoma from hepatocellular carcinoma in the noncirrhotic liver. Acad Radiol. 2021;28(6):799-807. https://doi.org/10.1016/j.acra.2020.04.027. PMID: 32386828.

16. Nie P, Yang G, Guo J, et al. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. Cancer Imaging. 2020 Feb 24;20(1):20. https://doi.org/10.1186/s40644-020-00297-z. PMID: 32093786.

17. Wu J, Liu A, Cui J, et al. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging. 2019;19:23. https://doi.org/10.1186/s12880-019-0321-9. PMID: 30866850.

18. Vasil`ev YA, Savkina EF, Borisov AA, et al. Use of radiomic signs for classification of liver neoplasms of various etiology based on computer tomography data. Journal Diagnostic & Interventional Radiology. 2024;18(2.1):79-86. (In Russ.)

19. Molostova YuV, Medvedeva BM, Kondratyev EV, et al. Capabilities of texture analysis and machine learning in MRI diagnosis of early GCR. Journal of Oncology: Diagnostic Radiology and Radiotherapy. 2024;7(4):68-73. https://doi.org/10.37174/2587-7593-2024-7-4-68-73. (In Russ.)

20. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133- 44. https://doi.org/10.1016/j.jhep.2019.02.023. PMID: 30876945.

21. Zhang Z, Jia X-F, Chen X-Y, et al. Radiomics-based prediction of microvascular invasion grade in nodular hepatocellular carcinoma using contrast-enhanced magnetic resonance imaging. J Hepatocell Carcinoma. 2024;11:1185-92. https://doi.org/10.2147/JHC.S461420. PMID: 38933179.

22. Zhong H, Zhang Y, Zhu G, et al. Preoperative prediction of microvascular invasion and relapse-free survival in hepatocellular Carcinoma ≥3 cm using CT radiomics: Development and external validation. BMC Med Imaging. 2025;25:141. https://doi.org/10.1186/s12880-025-01677-2. PMID: 40312321.

23. Li J, Liu Y, Zheng R, et al. Molecular mechanisms of TACE refractoriness: Directions for improvement of the TACE procedure. Life Sci. 2024;42. Art. 122540. https://doi.org/10.1016/j.lfs.2024.122540. PMID: 38428568.

24. Masthoff M, Irle M, Kaldewey D, et al. Integrating CT Radiomics and Clinical Features to Optimize TACE Technique Decision-Making in Hepatocellular Carcinoma. Cancers. 2025;17(5):893. https://doi.org/10.3390/cancers17050893. PMID: 40075740.

25. Guo X, Song J, Zhu L, et al. Multiparametric MRI-based radiomics and clinical nomogram predicts the recurrence of hepatocellular carcinoma after postoperative adjuvant transarterial chemoembolization. BMC Cancer. 2025;25(1):683. https://doi.org/10.1186/s12885-025-14079-y. PMID: 40229712.

26. Zhao KF, Xie CB, Wu Y. Prediction of the efficacy of first transarterial chemoembolization for advanced hepatocellular carcinoma via a clinical-radiomics model. World J Clin Cases. 2025;13(23):101742. https://doi.org/10.12998/wjcc.v13.i23.101742.

27. Tabari A, D’Amore B, Cox, M, et al. Machine Learning-Based Radiomic Features on Pre-Ablation MRI as Predictors of Pathologic Response in Patients with Hepatocellular Carcinoma Who Underwent Hepatic Transplant. Cancers. 2023;15(7), 2058. https://doi.org/10.3390/cancers15072058. PMID: 37046718.

28. Zhang X, Wang C, Zheng D, et al. Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation. Front Oncol. 2022;12:1013770. https://doi.org/10.3389/fonc.2022.1013770. PMID: 36439458.

29. Zhao L, Wang J, Song J, et al. Combining serum biomarkers and MRI radiomics to predict treatment outcome after thermal ablation in hepatocellular carcinoma. Am J Transl Res. 2025;17(3):2031-43. https://doi.org/10.62347/TFRF1430. PMID: 4022601.

30. Sakibov BI, Podluzhnyi DV, Patyutko YuI, et al. Long-term results of surgical treatment in patients with intermediate stage (CLC) hepatocellular carcinoma: a single-center retrospective study. Surgery and Oncology. 2025;15(2):62-73. (In Russ.). https://doi.org/10.17650/2949-5857-2025-15-2-62-73


Review

For citations:


Kodzoeva E.B., Romanova K.A., Medvedeva B.M., Drobot N.Ts. Radiomic Analysis in Hepatocellular Carcinoma: Prospects and Clinical Benefits (Review). Journal of oncology: diagnostic radiology and radiotherapy. 2025;8(3):78-86. (In Russ.) https://doi.org/10.37174/2587-7593-2025-8-3-78-86

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)