Pulse Sequence SWI/SWAN in Diagnosis of Microhemorrhage and Cerebral Vascular Micromalformations
https://doi.org/10.37174/2587-7593-2018-1-3-49-57
Abstract
Conventional neuroimaging techniques (MRI, CT) have difficulties in brain microhemorrhage diagnosis. Application of new MRI modalities has significantly improved detection and qualitative assessment of microbleedings in different brain regions. Susceptibility weighted imaging (SWI or SWAN) refers to such technologies. SWI (or SWAN) has been more sensitive in microhemorrhages detection compared with conventional T2 * pulse sequence. We retrospectively assessed the ability of SWAN pulse sequence in detection of brain microhemorrhages caused by different reasons (hypertensive microangiopathy, amyloid microangiopathy, mild and severe traumatic brain injury, etc.). We compared the obtained SWAN results with conventional 2D T2 *-weighted pulse sequence and CT data in cases when it was possible to do. The results have demonstrated high sensitivity and accuracy of SWAN in assessment of location, amount and distribution of brain microhemorrhages compared with CT and conventional MRI, including 2D T2 *-weighted imaging. We recommend to include SWI (or SWAN) pulse sequence into the primary brain MRI protocol in patients with different pathologies.
About the Authors
I. N. ProninRussian Federation
Moscow
N. E. Zakharova
Russian Federation
Moscow
L. M. Fadeeva
Russian Federation
Moscow
A. I. Pronin
Russian Federation
Moscow
E. I. Shults
Russian Federation
Moscow
A. I. Batalov
Russian Federation
Moscow
References
1. Коновалов А.Н., Корниенко В.Н. Компьютерная томография в нейрохирургической клинике. – М.: Медицина. 1985. 290 с.
2. Haacke E.M., Mittal S., Wu Z. et al. Susceptibility-weighted imaging: technical aspects and clinical applications. Part 1 // Amer. J. Neuroradiol. 2009. Vol. 30. P. 19–30.
3. Schweser F., Deistung A., Lehr B.W. et al. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping // Med. Phys. 2010. Vol. 37. P. 5165–5178.
4. Пронин И.Н., Туркин А.М., Долгушин М.Б. и соавт. Тканевая контрастность, обусловленная магнитной восприимчивостью: применение в нейрорентгенологии // Мед. визуализация. 2011. № 3. С. 2–11.
5. Корниенко В.Н., Пронин И.Н. Диагностическая нейрорадиология. – М.: «Андреева Т.М.». 2006.
6. Cheng A.L., Batool S., McCreary C.R. et al. Susceptibilityweighted imaging is more reliable than T2 *-weighted gradientrecalled echo MRI for detecting microbleeds // Stroke. 2013. Vol. 44. P. 2782–2786.
7. Shams S., Martola J., Cavallin L. et al. SWI or T2 *: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska imaging dementia study // Amer. J. Neuroradiol. 2015. Vol. 36. P. 1089–1095.
8. Haacke E.M., Xu Y., Cheng Y. et al. Susceptibility weighted imaging (SWI) // Magn. Reson. Imaging. 2004. Vol. 52. P. 612– 618.
9. Scully M.A., Yeaney G.A., Compton M.L. et al. SWAN MRI revealing multiple microhemorrhages secondary to septic emboli from mucormycosis // Neurology. 2012. Vol. 79. P. 1932– 1933. DOI: 10.1212/WNL.0b013e318271f86c.
10. Charidimou A., Jager H.R., Werring D.J. Cerebral microbleed detection and mapping: Principles, methodological aspects and rationale in vascular dementia // Exper. Gerontol. 2012. Vol. 47. P. 843–852.
11. Tan I., van Schijndel R., Pouwels P. et al. MR-venography of multiple sclerosis // Amer. J. Neuroradiol. 2000. Vol. 21. P. 1039– 1042.
12. Tong K., Ashwal S., Holshouser B. et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results // Radiology. 2003. Vol. 227. P. 332–339.
13. Tong K.A., Ashwal S., Obenaus A. et al. Susceptibility-weighted MR imaging: a review of clinical applications in children // Amer. J. Neuroradiol. 2008. Vol. 29. P. 9–17. [PMID: 17925363 DOI: 10.3174/ajnr.A0786]
14. Wycliffe N., Choe J., Holshouer B. et al. Reliability in detection of hemorrhage in acute stroke by a new tree-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study // J. Magn. Reson. Imaging. 2004. Vol. 20. P. 372–377.
15. Mittal S., Wu Z., Neelavialli J. et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2 // Amer. J. Neuroradiol. 2009. Vol. 30. P. 232–252.
16. Scheid R., Preul C., Gruber O. et al. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2 *-weighted gradient-echo imaging at 3T // Amer. J. Neuroradiol. 2003. Vol. 24. P. 1049–1056.
17. Wu Z., Li S., Lei J. et al. Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging // Amer. J. Neuroradiol. 2010. Vol. 31. P. 1302–1310.
18. Spitz G., Maller J.J., Ng A. et al. Detecting lesions after traumatic brain injury using susceptibility weighted imaging: a comparison with fluid-attenuated inversion recovery and correlation with clinical outcome // J. Neurotrauma. 2013. Vol. 30. P. 2038–2050.
19. Babikian T., Freier M.C., Tong K.A. et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury // Pediatr. Neurol. 2005. Vol. 33. P. 184–194. [PMID: 16139733 DOI: 10.1016/j.pediatrneurol.2005.03.015]
20. Chiang F., Tedesqui G., Varon M.D. et al. Imaging spectrum of brain microhemorrhages on SWI // Neurographics. 2016. Vol. 6. № 3. P. 174–186.
21. Tong K.A., Ashwal S., Holshouser B.A. et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions // Ann. Neurol. 2004. Vol. 56. P. 36–50. [PMID: 15236400 DOI: 10.1002/ ana.20123]
22. Halefoglu A., Yousem D. Susceptibility weighted imaging: clinical applications and future directions // World J. Radiol. 2018. Vol. 10. № 4. P. 30–45. [doi:10.4329/wjr.v10.i4.30]
23. Verma R.K., Kottke R., Andereggen L. et al. Detecting subarachnoid hemorrhage: comparison of combined FLAIR/ SWI versus CT // Eur. J. Radiol. 2013. Vol. 82. P. 1539–1545.
24. Hasiloglu Z.I., Albayram S., Selcuk H. et al. Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers // Amer. J. Neuroradiol. 2011. Vol. 32. P. 99– 102.
25. Хейреддин А., Филатов Ю.М., Яковлев С.Б., Белоусова О.Б. Хирургическое лечение множественных церебральных аневризм. – М.: «Т.А.Алексеева». 2018. 287 с.
26. Toh C.H., Wei K.C., Chang C.N. et al. Differentiation of pyogenic brain abscess from necrotic glioblastomas with use of susceptibility-weighted imaging // Amer. J. Neuroradiol. 2012. Vol. 33. P. 1534–1538 [PMID: 22422181 DOI: 10.3174/ajnr.A2986] .
27. Horger M., Hebart H., Schimmel H. et al. Disseminated mucormycosis in haematological patients: CT and MRI findings with pathological correlation // Brit. J. Radiol. 2006. Vol. 79. P. e884–95.
28. Wu Z., Mittal S., Kish K. et al. Identification of calcification with MRI using susceptibility-weighted imaging: a case study // J. Magn. Reson. Imaging. 2009. Vol. 29. P. 177–182.
29. Kidwell C., Saver J., Vilablanca J. et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application // Stroke. 2002. Vol. 33. P. 95–98.
30. Greenberg S., O’Donnel H., Schaefer P.W. et al. MRI detection of new hemorrhages: potential marker of progression in cerebral amyloid angiopathy // Neurology. 1999. Vol. 53. P. 1135–1138.
31. Oberrstein L. S., van den Boom R., van Buchem M. et al. Cerebral microbleeds in CADASIL // Neurology. 2003. Vol. 57. P. 1066–1070.
32. Campi A., Benndorf G., Filippi P. et al. Primary angiitis of the central nervous system: serial MRI of brain and spinal cord // Neuroradiology. 2001. Vol. 43. P. 599–607.
33. Flacke S., Urbach H., Keller E. et al. Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT // Radiology. 2000. Vol. 215. P. 476–482. [PMID: 10796928 DOI: 10.1148/radiology.215.2.r00ma09476]
34. Hermier M., Nighoghossian N. Contribution of susceptibilityweighted imaging to acute stroke assessment // Stroke. 2004. Vol. 35. P. 1989–1994. [PMID: 15192245 DOI: 10.1161/01.STR.0000133341.74387.96]
35. Rovira A., Orellana P., Alvarez-Sabin J. et al. Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradientecho MR imaging // Radiology. 2004. Vol. 232. P. 466– 473. [PMID: 15215546 DOI: 10.1148/radiol.2322030273]
36. Thomas B., Somasundaram S., Thamburaj K. et al. Clinical applications of susceptibility weighted MR imaging of the brain–a pictorial review // Neuroradiology. 2008. Vol. 50. P. 105– 116. [PMID: 17929005 DOI: 10.1007/s00234-007-0316-z]
37. Lingegowda D., Thomas B., Vaghela V. et al. ‘Susceptibility sign’ on susceptibility-weighted imaging in acute ischemic stroke // Neurol. India 2012. Vol. 60. P. 160–164. [PMID: 22626696 DOI: 10.4103/0028-3886.96389]
38. Yang Q., Yang Y., Li C. et al. Quantitative assessment and correlation analysis of cerebral microbleed distribution and leukoaraiososin stroke outpatients // Neurol. Res. 2015. Vol. 37. № 5. P. 403–409.
39. Abla A., Wait S.D., Uschold T. et al. Developmental venous anomaly, cavernous malformation, and capillary telangiectasia: spectrum of a single disease // Acta Neurochir. (Wien). 2008. Vol. 150. P. 487–489, discussion 489. [PMID: 18351283 DOI: 10.1007/s00701-008-1570-5]
40. Cooper A.D., Campeau N.G., Meissner I. Susceptibilityweighted imaging in familial cerebral cavernous malformations // Neurology. 2008. Vol. 71. P. 382. [PMID: 18663188 DOI: 10.1212/01.wnl.0000319659.86629.c8]
41. Essig M., Reichenbach J., Shad I. et al. High resolution MR venography of cerebral arteriovenous malformations // Magn. Reson. Imaging. 2001. Vol. 17. P. 1417–1425.
42. Khandelwal N., Agarwal A., Kochhar R. et al. Comparison of CT venography with MR venography in cerebral sinovenous thrombosis // Amer. J. Roentgenol. 2006. Vol. 187. P. 1637–1643. [PMID: 17114562 DOI: 10.2214/AJR.05.1249]
43. Greenberg S.M., Eng J.A., Ning M. et al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage // Stroke. 2004. Vol. 35. P. 1415–1420. [PMID: 15073385 DOI: 10.1161/01.STR.0000126807.69758.0e]
44. Blitstein M.K., Tung G.A. MRI of cerebral microhemorrhages // Amer. J. Roentgenol. 2007. Vol. 189. P. 720–725. [PMID: 17715122 DOI: 10.2214/AJR.07.2249]
45. Haacke E.M., DelProposto Z.S., Chaturvedi S. et al. Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging // Amer. J. Neuroradiol. 2007. Vol. 28. P. 316–317.
46. Ghostine S., Raghavan R., Khanlou N. et al. Cerebral amyloid angiopathy: micro-haemorrhages demonstrated by magnetic resonance susceptibility-weighted imaging // Neuropathol. Appl. Neurobiol. 2009. Vol. 35. P. 116–119.
47. Joutel A., Corpechot C., Ducros A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia // Nature. 1996. Vol. 383. P. 707–710.
48. Chabriat H., Vahedi K., Iba-Zizen M.T. et al. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy // Lancet. 1995. Vol. 346. P. 934–939.
49. Yousry T.A., Seelos K., Mayer M. et al. Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological findings in cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) // Amer. J. Neuroradiol. 1999. Vol. 20. P. 91–100.
50. Viswanathan A., Chabriat H. Cerebral microhemorrhage // Stroke. 2006. Vol. 37. P. 550–555.
Review
For citations:
Pronin I.N., Zakharova N.E., Fadeeva L.M., Pronin A.I., Shults E.I., Batalov A.I. Pulse Sequence SWI/SWAN in Diagnosis of Microhemorrhage and Cerebral Vascular Micromalformations. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(3):49-57. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-3-49-57