18F-choline PET/CT in Cerebral Gliomas
https://doi.org/10.37174/2587-7593-2018-1-1-19-23
Abstract
Purpose: To evaluate the diagnostic value of PET with 18F-choline in patients with glial brain tumors.
Material and methods: The analysis was based on data generated from PET/CT and MRI examinations of 30 patients with intracerebral tumors: glioblastomas – 9 (30 %) cases, anaplastic astrocytomas – 9 (30 %) cases, gliomas GrII – 7 (23.3 %) cases, benign astrocytomas GrI – 5 (16.7 %) cases. All patients with brain neoplasms underwent a selective brain 18F-choline PET/CT and MRI follow up at minimum two time points: for at least 6 months. All PET/CT studies were performed with Biograph mCT Siemens (multidetector (64) helical CT scanner, 120 kV, 300 mA, slice thick ness 1.2 mm; PET acquisitions occurred at 4 ring positions (48 lutetium orthosilicate based units each), scan slab – 21.6 cm, at the first stage 5 min / slab, the second 10 min / slab). The first registration was performed immediately after intravenous injection of the radiopharmaceutical (RP) using an automatic RP injector Intego 2010. Then patient were scanned again with the same protocol 45–55 min after injection. Administered activity was 300 MBq. Images visually and semiquantitatively assessment, with maximum standardized uptake value registration (maxSUV1 – on the first stage and maxSUV2 – on the second), was performed offline on a SyngoVia workstation using Oncology protocol.
Results: The highest average maxSUV1 were observed in anaplastic astrocytomas and glioblastomas – 5.07 and 4.89, respectively, but the highest average growth (in %) of maxSUV2 observed in glioblastomas – 15.46 %. The lowest maxSUV1 0.76 was registered in low-grade gliomas GrI.
Conclusion: PET using different radiopharmaceuticals, provides unique information on the functional status of tumors for a variety of biological processes. 18F-choline is a marker of cell membrane lipid metabolism, so it could allow estimating the activity of cell membranes formation. An unaffected brain substance almost does not accumulate 18F-choline. Two-stage PET technique of brain scanning with 18F-choline enabled us to assume the gradate of malignancy of intracranial tumors which depends on both the level of accumulation of tracer in the first stage (maxSUV1) and the degree of uptake increase in the second stage (maxSUV2). Thus, the increment of maxSUV2 may be useful in the evaluation of tumor activity.
About the Authors
M. B. DolgushinRussian Federation
Moscow
A. I. Pronin
Russian Federation
Moscow
N. B. Vihrova
Russian Federation
Moscow
D. I. Nevzorov
Russian Federation
Moscow
E. A. Nechipai
Russian Federation
Moscow
E. A. Kobyakova
Russian Federation
Moscow
N. A. Meshcheryakova
Russian Federation
Moscow
P. E. Tulin
Russian Federation
Moscow
A. R. Odzharova
Russian Federation
Moscow
References
1. Wester H.J., Herz M., Weber W. et al. Synthesis and radiopharmacology of O-(2-[18F] fluoroethyl)-L-tyrosine for tumor imaging // J. Nucl. Med. 1999. Vol. 40. P. 205–212.
2. Langen K.J., Jarosch M., Muhlensiepen H. et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas // Nucl. Med. Biol. 2003.Vol. 30. P. 501–508.
3. Moore K.R., Harnsberger H.R., Shelton C., Davidson H.C. “Leave me alone” lesions of the petrous apex // Amer. J. Neuroradiol. 1998. Vol. 19. P. 733–738.
4. Pyka T., Gempt J., Hiob D. et al. Textural analysis of pretherapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas // Eur. J. Nucl. Med. Mol. Imaging. 2016. Vol. 43. P. 133–141.
5. Gauthier S., Diksic M., Yamamoto L. et al. Positron emission tomography with [11C]choline in human subjects // Can. J. Neural. Sci. 1985. Vol. 12. P. 214.
6. De Grado T.R., Baldwin S.W., Wang S. et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers // J. Nucl. Med. 2001. Vol. 42. P. 1805–1814.
7. Haubrich D.R., Wang P.F.L., Wedeking P.W. Distribution and metabolism of intravenously administered choline[methyl-3H] and synthesis in vivo of acetylcholine in various tissues of guinea pigs // J. Pharmacol. Exp. Ther. 1975. Vol. 193. P. 246–255.
8. Katz-Brull R., Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero transmethod // Anticancer Res. 1996. Vol. 16. P. 1375–1380.
9. Nakagami K., Uchida T., Ohwada S. et al. Increased choline kinase activity and elevated phosphocholine levels in human colon cancer // Jpn. J. Cancer Res. 1999. Vol. 90. P. 419–424.
10. Ramirez de Molina A., Rodriguez-Gonzalez A., Gutierrez R. et al. Overexpression of choline kinase is a frequent feature in human tumorderived cell lines and in lung, prostate, and colorectal human cancers // Biochem. Biophys. Res. Commun. 2002. Vol. 296. P. 580–583.
11. Yavin I. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture: patterns of acetylcholine, phosphocholine and choline phosphoglycerides labeling from [C]cholin // J. Biol. 1976. Vol. 251. P. 1392–1397.
12. Slack B.E., Richardson U., Nitsch R.M., Wurtman R.J. Dioctanoylglycerol stimulates accumulation of [methyl’4C]choline and its incorporation into acetylcholine and phosphatidylcholine in a human cholinergic neuroblastoma cell line // Brain Res. 1972. Vol. 585. P. 169–176.
13. Amane S.P., Honig M.A., Milner T.A. et al. Sites of acetylcholine synthesis and release associated with microvessels in cerebral cortex: ultrastructural and neurochemical studies // J. Cereb. Blood Flow Metab. 1987. Vol. 7. P. 5330.
14. Hamel E., Assumel-Lurdin C., Edvinsson L. et al. Neuronal versus endothelial origin of vasoactive acethylcholine in pial vessels // Brain Res. 1987. Vol. 420. P. 391–396.
15. Estrada C., Bready J., Berliner J., Cancilla P.A. Choline uptake by cerebral capillary endothelial cells in culture // J. Neurochem. 1990. Vol. 54. P. 1467–1473.
16. Galea E., Estrada C. Ouabaine-sensitive choline transport system in capillaries isolated from bovine brain // J. Neurochem. 1992. Vol. 59. P. 936–941.
17. Wyss M. T., Spaeth N., Biollaz G. et al. Uptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis // J. Nucl. Med. 2007. Vol. 48. № 4. P. 608–614.
18. Vanpouille C., Le Jeune N., Kryza D. et al. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model // Eur. J. Nucl. Med. Mol. Imaging. 2009. Vol. 36. № 8. P. 1256–1264.
19. Assimakopoulos A., Polyzoidis K., Sioka C. Positron emission tomography imaging in gliomas // Neuroimmunol. Neuroinflammation. 2014. Vol. 1. № 3. P. 107–114.
20. Hara T., Kosaka N., Kishi H. PET imaging of prostate cancer using carbon-11-choline // J. Nucl. Med. 1998. Vol. 39. P. 990– 995.
21. Hara T., Kosaka N., Shinoura N. et al. PET imaging of brain tumor with [methyl-11C]choline // J. Nucl. Med. 1997. Vol. 38. P. 842–847.
22. Hara T., Kosaka N., Kishi H. Development of 18F-fluoroethylcholine for cancer imaging with PET: Synthesis, biochemistry, and prostate cancer imaging // J. Nucl. Med. 2002. Vol. 43. P. 187–199.
23. De Grado T.R., Coleman R.E., Wang S. et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: Initial findings in prostate cancer // Cancer Res. 2001. Vol. 61. P. 110–117.
24. Shinoura N., Nishijima M., Hara T. et al. Brain tumors: detection with C-11 choline PET // Radiology. 1997. Vol.202. № 2. P. 497– 503.
25. Kwee S.A., Ko J.P., Jiang C.S. et al. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET // Radiology. 2007. Vol. 244. P. 557–565.
26. Ohtani T., Kurihara H., Ishiuchi S. et al. Brain tumour imaging with carbon-11 choline: Comparison with FDG PET and gadolinium-enhanced MR imaging // Eur. J. Nucl. Med. 2001. Vol. 28. P. 1664–1670.
27. Goebell E., Paustenbach S., Vaeterlein O. et al. Low-grade and anaplastic gliomas: Differences in architecture evaluated with diffusion-tensor MR imaging // Radiology. 2006. Vol. 239. P. 217–222.
28. Provenzale J.M., McGraw P., Mhatre P. et al. Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging // Radiology. 2004. Vol. 232. P. 451–460.
29. Burtscher I.M., Skagerberg G., Geijer B. et al. Proton MR spectroscopy and preoperative diagnostic accuracy: An evaluation of intracranial mass lesions characterized by stereotactic biopsy findings // Amer. J. Neuroradiol. 2000. Vol. 21. P. 84–93.
30. Herholz K. Brain tumors: an update on clinical PET research in gliomas // Semin. Nucl. Med. 2017. Vol. 47. P. 5–17.
Review
For citations:
Dolgushin M.B., Pronin A.I., Vihrova N.B., Nevzorov D.I., Nechipai E.A., Kobyakova E.A., Meshcheryakova N.A., Tulin P.E., Odzharova A.R. 18F-choline PET/CT in Cerebral Gliomas. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(1):19-23. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-1-19-23