Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

Whole-Body Diffusion-Weighted Magnetic Resonance Imaging with Assessment of Apparent Diffusion Coefficient in Hodgkin’s Lymphoma

https://doi.org/10.37174/2587-7593-2018-1-3-44-48

Abstract

Purpose: To determine the effectiveness of apparent diffusion coefficient (ADC) for the purpose of normal and diseased lymph nodes (LN) differentiation in HL by DWI MRI.

Material and methods: To determine the effectiveness of ADC for the purpose of normal and diseased LN differentiation in HL was compared ADC values of LN in 27 apparently healthy individuals and in 41 patients with verified HL.

Results: 95 % confidence intervals showed that values of ADC in normal LN ranged from 1.00 to 1.73 . 10–3 s/mm2 and were significantly higher (p < 0,05), than in LN affected by HL (ADC from 0.59 to 0.94 . 10–3 mm2/s). Cut off point of normal and lymphomatous-LN ranged from 0.94 to 1.00 . 10–3 mm2/s. Therefore, LN with ADC below 0.94 . 10–3 mm2/s could be interpreted as affected by HL.

About the Authors

A. I. Mikhaylov
Russian Medical Academy of Continuing Postgraduate Education; N.N. Blokhin National Medical Research Center of Oncology
Russian Federation
Moscow


V. O. Panov
Russian Medical Academy of Continuing Postgraduate Education
Russian Federation
Moscow


N. A. Meshcheryakova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation
Moscow


A. I. Pronin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation
Moscow


N. B. Vikhrova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation
Moscow


M. B. Dolgushin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation
Moscow


References

1. Heidemann R.M., Ozsarlak O., Parizel P.M. et al. A brief review of parallel magnetic resonance imaging // Eur. Radiol. 2003. Vol. 13. № 10. Р. 2323–2337.

2. Pruessmann K.P. Encoding and reconstruction in parallel // NMR in Biomedicine. 2006. Vol. 19. № 3. Р. 288–299.

3. Pipe J.G. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging // Magn. Reson. Med. 1999. Vol. 42. № 5. Р. 963–969.

4. Kwee T.C., Takahara T., Vermoolen M.A. et al. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children // Pediatric Radiol. 2010. Vol. 40. № 10. Р. 1592–1602.

5. Takahara T., Imai Y., Yamashita T. et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display // Matrix. 2004. Vol. 160. № 160. Р. 160.

6. Kwee T.C., Takahara T., Luijten P.R. et al. ADC measurements of lymph nodes: inter-and intra-observer reproducibility study and an overview of the literature // Eur. J. Radiol. 2010. Vol. 75. № 2. Р. 215–220.

7. Kwee T.C., Takahara T., Ochiai R. et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology // Eur. Radiol. 2008. Vol. 18. № 9. Р. 1937–1952.

8. Kwee T.C., Basu S., Torigian D.A. et al. Evolving importance of diffusion-weighted magnetic resonance imaging in lymphoma // PET Clinics. 2012. Vol. 7. № 1. Р. 73–82.

9. Kwee T.C., van Ufford H.M.E.Q., Beek F.J. et al. Whole body magnetic resonance imaging, including diffusion weighted imaging, for diagnosing bone marrow involvement in malignant lymphoma // Brit. J. Haematol. 2010. Vol. 149. № 4. Р. 628–630.

10. Kwee T.C., Kwee R.M., Nievelstein R.A. Imaging in staging of malignant lymphoma: a systematic review // Blood. 2008. Vol. 111. №. 2. Р. 504–516.

11. Van Ufford H.M.E., Kwee T.C., Beek F.J. et al. Whole body MRI, including diffusion-weighted imaging, compared to 18F-FDGPET-CT in newly diagnosed lymphoma: initial results // Amer. J. Roentgenol. 2011. № 196(3). Р. 662–669

12. Vermoolen M.A., Kersten M.J., Fijnheer R. et al. Magnetic resonance imaging of malignant lymphoma // Expert Rev. Hematol. 2011. Vol. 4. № 2. Р. 161.

13. Stejkal E.O., Tanner J.E. Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient // J. Chem. Phys. 1965. Vol. 42. № 1. Р. 288–292.

14. Le Bihan D., Breton E., Lallemand D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging // Radiology. 1988. Vol. 168. №. 2. Р. 497–505.

15. Li S., Xue H., Li J. et al. Application of whole body diffusion weighted MR imaging for diagnosis and staging of malignant lymphoma // Chin. Med. Sci. J. 2008. Vol. 23. №. 3. Р. 138–144.

16. Lin C., Itti E., Haioun C. et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis // J. Nucl. Med. 2007. Vol. 48. № 10. Р. 1626–1632.

17. Hayashida Y., Hirai T., Morishita S. et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity // Amer. J. Neuroradiol. 2006. Vol. 27. № 7. Р. 1419–1425.

18. Schnapauff D., Zeile M., Niederhagen M.B. et al. Diffusionweighted echo‐planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft‐tissue sarcomas // J. Magn. Reson. Imaging. 2009. Vol. 29. № 6. Р. 1355– 1359.

19. Sugahara T., Korogi Y., Kochi M. et al. Usefulness of diffusion weighted MRI with echo planar technique in the evaluation of cellularity in gliomas // J. Magn. Reson. Imaging. 1999. Vol. 9. № 1. Р. 53–60.

20. Padhani A.R., Liu G., Mu-Koh D. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations // Neoplasia. 2009. Vol. 11. № 2. Р. 102– 125.

21. Ioachim H.L., Medeiros L.J. Ioachim’s Lymph Node Pathology. – Lippincott Williams & Wilkins, 2009.

22. Holzapfel K., Duetsch S., Fauser C. et al. Value of diffusionweighted MR imaging in the differentiation between benign and malignant cervical lymph nodes // Eur. J. Radiol. 2009. Vol. 72. № 3. Р. 381–387.

23. King A.D., Ahuja A.T., Yeung D.K.W. et al. Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging 1 // Radiology. 2007. Vol. 245. № 3. Р. 806–813.

24. Rahmouni A., Tempany C., Jones R. et al. Lymphoma: monitoring tumor size and signal intensity with MR imaging // Radiology. 1993. Vol. 188. № 2. Р. 445–451.

25. Sumi M., Sakihama N., Sumi T. et al. Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer/ // Amer. J. Neuroradiol. 2003. Vol. 24. №. 8. Р. 1627–1634.

26. Sumi M., Van Cauteren M., Nakamura T. MR microimaging of benign and malignant nodes in the neck // Amer. J. Roentgenol. 2006. Vol. 186. № 3. Р. 749–757.

27. Sumi M., Nakamura T. Diagnostic importance of focal defects in the apparent diffusion coefficient-based differentiation between lymphoma and squamous cell carcinoma nodes in the neck // Eur. Radiol. 2009. Vol. 19. № 4. Р. 975–981.

28. Lin C., Luciani A., Itti E. et al. Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study // Invest. Radiol. 2011. Vol. 46. № 5. Р. 341–349.

29. Koh D.M., Collins D.J. Diffusion-weighted MRI in the body: applications and challenges in oncology/ // Amer. J. Roentgenol. 2007. Vol. 188. № 6. Р. 1622–1635.

30. Torabi M., Aquino S.L., Harisinghani M.G. et al. Current concepts in lymph node imaging // J. Nucl. Med. 2004. Vol. 45. № 9. Р. 1509–1518.

31. Cheson B.D., Fisher R.I., Barrington S.F. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification // J. Clin. Oncol. 2014. С. JCO. 2013.54. 8800.

32. Willinek W.A., Gieseke J., Kukuk G. Parallel RF transmission in body MRI for reduced dielectric shading, improved B1 homogeneity and accelerated imaging at 3.0 T: Initial clinical experience in 40 patients using MultiTransmit. – ISMRM 17th Sci. Meet. & Exhibition, Honolulu, Hawai’i, USA. 2009.

33. Takahara T., Zwanenburg J., Visser F. et al. Fat suppression with slice-selection gradient reversal (SSGR) revisited. – ISMRM 17th Sci. Meet. & Exhibition, Honolulu, Hawai’i, USA. 2009.

34. Thoeny H.C., Triantafyllou M., Birkhaeuser F.D. et al. Combined ultrasmall superparamagnetic particles of iron oxide–enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients // Europ. Urol. 2009. Vol. 55. № 4. Р. 761–769.

35. Von Schulthess G.K., Schlemmer H.P.W. A look ahead: PET/ MR versus PET/CT // Europ. J. Nucl. Med. and Molec. Imaging. 2009. Vol. 36. № 1. Р. 3–9.


Review

For citations:


Mikhaylov A.I., Panov V.O., Meshcheryakova N.A., Pronin A.I., Vikhrova N.B., Dolgushin M.B. Whole-Body Diffusion-Weighted Magnetic Resonance Imaging with Assessment of Apparent Diffusion Coefficient in Hodgkin’s Lymphoma. Journal of oncology: diagnostic radiology and radiotherapy. 2018;1(3):44-48. (In Russ.) https://doi.org/10.37174/2587-7593-2018-1-3-44-48

Views: 419


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)