Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

Peculiarities of the Application of Diffusion-Curtosis MRI in the Differential Diagnosis of Glial Brain Tumors and Solitary Metastasis

https://doi.org/10.37174/2587-7593-2023-6-1-26-40

Abstract

Purpose: To improve  the  differential diagnosis of high-grade gliomas  and solitary  metastases by introducing the diffusion-kurtosis magnetic resonance imaging technique into the MRI scan protocol.

Material and methods: The study included 43 patients who underwent examination and treatment at the N.N. Blokhin  National Research Medical  Center of Oncology from  October 2019 to March  2022, in which, according to magnetic resonance imaging, solitary  formations in the brain  substance were detected. A total of 43 neoplasms were found  in the substance of the brain,  of which:  17 glioblastomas in 17 patients (40 %), 25 solitary  metastatic tumors of lung,  breast, melanoma and kidney  cancer  (60 %). We evaluated the  tumor size, diffusion and kurtosis parameters, such as mean kurtosis (MK), axial kurtosis (AK), radial  kurtosis (RK), kurtosis anisotropy (KA), radial  diffusion (RD), fractional anisotropy (FA), relative  anisotropy (RA), tortuosity of the trajectory (TTD).

Results:  Statistically significant differences (р < 0.05) in  such  parameters of diffusion and  kurtosis in the  tumor as kurtosis anisotropy (KA), fractional anisotropy (FA) and tortuosity of the  trajectory (TT) were revealed.  Significant differences between solitary  metastases and malignant glial tumors based  on diffusion and kurtosis values such as mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), radial diffusion (RD), and relative  anisotropy (RA) (criteria where р > 0.05) was not detected.

About the Authors

N. V. Garanina
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24, Kashirskoye Shosse, Moscow, 115478


Competing Interests:

Not declared



M. B. Dolgushin
Federal Center of Brain Research and Neurotechnologies
Russian Federation

build. 10, 1, Ostrovityanova street, Moscow, 117513


Competing Interests:

Not declared



M. G. Lapteva
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24, Kashirskoye Shosse, Moscow, 115478


Competing Interests:

Not declared



L. M. Fadeeva
N.N. Burdenko Neurosurgery Center
Russian Federation

16, 4th Tverskaya-Yamskaya street, Moscow, 125047


Competing Interests:

Not declared



D. V. Sashin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24, Kashirskoye Shosse, Moscow, 115478


Competing Interests:

Not declared



References

1. Soffietti R, Rudà R, Trevisan E. Brain metastases: current management and new developments. Curr Opin Oncol. 2008 Nov;20(6):676-84. DOI: 10.1097/CCO.0b013e32831186fe.

2. Belsky KK. The incidence of malignant gliomas of the brain in the Volgograd region. Russian Journal of Oncology. 2010;(4):39-42. (In Russian). DOI: 10.17816/PED6475-84.

3. Pisarev VB. The prevalence of various histological variants of brain tumors in the Volgograd region according to the data of surgical biopsies for the period 2001–2006. Archive of pathology. 2008;(4):17-20. (In Russian). DOI: 10.17816/PED6475-84.

4. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-51. DOI: 10.1093/neuonc/noab106.

5. Ostrom QT, Patil N, Cioffi G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020 Oct 30;22(12 Suppl 2):iv1-iv96. DOI: 10.1093/neuonc/noaa200.

6. Ulitin AYu, Matsko MV, Kobyakov GL, et al. Practical recommendations for the treatment of primary tumors of the central nervous system of the Russian Society of Clinical Oncology (RUSSCO). Malignant tumours. 2022;12(3s2-1):113-140. (In Russian). DOI: 10.18027/2224-5057-2022-12-3s2-113-140.

7. Nabors LB, Portnow J, Ammirati M, et al. Central nervous system cancers, version 2.2014. Featured updates to the NCCN Guidelines. J Natl Compr Canc Netw. 2014 Nov;12(11):1517-23. DOI: 10.6004/jnccn.2014.0151

8. Palmieri D. Central Nervous System Metastasis, the Biological Basis and Clinical Considerations. New York: Springer; 2012. 228 p. DOI: 10.1007/978-94-007-5291-7

9. Sacks P, Rahman M. Epidemiology of Brain Metastases. Neurosurg Clin N Am. 2020 Oct;31(4):481-8. DOI: 10.1016/j.nec.2020.06.001.

10. Aleshin VA, Bekyashev AKh, Belov DM, et al. Clinical guidelines for the diagnosis and treatment of cerebral metastases of malignant tumors. Moscow 2014. (In Russian).

11. Lee EJ, Ahn KJ, Lee EK, et al. Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol. 2013 Dec;68(12):e689-97. DOI: 10.1016/j.crad.2013.06.021.

12. Byrnes TJ, Barrick TR, Bell BA, et al. Diffusion tensor imaging discriminates between glioblastoma and cerebral metastases in vivo. NMR Biomed. 2011 Jan;24(1):54-60. DOI: 10.1002/nbm.1555.

13. Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005 Jun;53(6):1432-40. DOI: 10.1002/mrm.20508.

14. Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol. 2014 Jan;202(1):W26-33. DOI: 10.2214/AJR.13.11365.

15. Hui ES, Cheung MM, Qi L, Wu EX. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage. 2008 Aug 1;42(1):122-34. DOI: 10.1016/j.neuroimage.2008.04.237.

16. Helpern JA, Adisetiyo V, Falangola MF, et al. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging. 2011 Jan;33(1):17-23. DOI: 10.1002/jmri.22397.

17. Zakharova NE, Potapov AA, Pronin IN, et al. Diffusion kurtosis imaging in diffuse axonal injury. N.N. Burdenko Issues of Neurosurgery. 2019;83(3):5-16. (In Russian). DOI: 10.17116/neiro2019830315.

18. Raab P, Hattingen E, Franz K, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010 Mar;254(3):876-81. DOI: 10.1148/radiol.09090819.

19. Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology. 2012 May;263(2):492-501. DOI: 10.1148/radiol.12110927.

20. Van Cauter S, De Keyzer F, Sima DM, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro Oncol. 2014 Jul;16(7):1010-21. DOI: 10.1093/neuonc/not304.

21. Gállego Pérez-Larraya J, Hildebrand J. Brain metastases. Handb Clin Neurol. 2014;121:1143-57. DOI: 10.1016/B978-0-7020-4088-7.00077-8.

22. Ostrom QT, Wright CH, Barnholtz-Sloan JS. Brain metastases: epidemiology. Handb Clin Neurol. 2018;149:27-42. DOI: 10.1016/B978-0-12-811161-1.00002-5.

23. Langley RR, Fidler IJ. The biology of brain metastasis. Clin Chem. 2013 Jan;59(1):180-9. DOI: 10.1373/clinchem.2012.193342.

24. Takeshima H, Kuratsu J, Nishi T, Ushio Y. Prognostic factors in patients who survived more than 10 years after undergoing surgery for metastatic brain tumors: report of 5 cases and review of the literature. Surg Neurol. 2002 Aug;58(2):118-23; discussion 123. DOI: 10.1016/s0090-3019(02)00753-x.

25. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: Technique and applications. World J Radiol. 2016 Sep 28;8(9):785-98. DOI: 10.4329/wjr.v8.i9.785.

26. Lambron J, Rakotonjanahary J, Loisel D, et al. Can we improve accuracy and reliability of MRI interpretation in children with optic pathway glioma? Proposal for a reproducible imaging classification. Neuroradiology 2016;58(2):197-208. DOI: 10.1007/s00234-015-1612-7

27. Kälin RE, Cai L, Li Y. TAMEP are brain tumor parenchymal cells controlling neoplastic angiogenesis and progression. Cell Syst. 2021 Mar 17;12(3):248-62. e7. DOI: 10.1016/j.cels.2021.01.002.

28. Clinical Guidelines “Primary Tumors of the Central Nervous System”. Ed. by A.D. Kaprin, 2020. (In Russian).

29. Holly KS, Barker BJ, Murcia D, et al. High-grade Gliomas Exhibit Higher Peritumoral Fractional Anisotropy and Lower Mean Diffusivity than Intracranial Metastases. Front Surg. 2017 Apr 10;4:18. DOI: 10.3389/fsurg.2017.00018.

30. Al-Okaili RN, Krejza J, Wang S, et al. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006 Oct;26 Suppl 1:S173-89. DOI: 10.1148/rg.26si065513.

31. Pavlisa G, Rados M, Pavlisa G, et al. The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema. Clin Imaging. 2009 Mar-Apr;33(2):96-101. DOI: 10.1016/j.clinimag.2008.06.035.

32. Tsougos I, Svolos P, Kousi E, et al. Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging. 2012 Oct 26;12(3):423-36. DOI: 10.1102/1470-7330.2012.0038.

33. Helpern JA, Adisetiyo V, Falangola MF, et al. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging. 2011 Jan;33(1):17-23. DOI: 10.1002/jmri.22397.


Review

For citations:


Garanina N.V., Dolgushin M.B., Lapteva M.G., Fadeeva L.M., Sashin D.V. Peculiarities of the Application of Diffusion-Curtosis MRI in the Differential Diagnosis of Glial Brain Tumors and Solitary Metastasis. Journal of oncology: diagnostic radiology and radiotherapy. 2023;6(1):26-40. (In Russ.) https://doi.org/10.37174/2587-7593-2023-6-1-26-40

Views: 520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)