Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

Spatial Fractionation in Tumor Radiotherapy and Discussed Mechanisms of the Therapeutic Window Extension

https://doi.org/10.37174/2587-7593-2023-6-1-9-18

Abstract

Irradiation of the  tumor through the  ridge  filters  in order  to reduce  the  damage of the  normal tissues while maintaining the same damage to the neoplastic tissue  as with uniform field is used for many decades. In recent years, a positive effect has been demonstrated using synchrotron radiation and beams of accelerated protons with radiation fields diminished to 25-100 micrometers with the same distances between them.  Less skin  damage achieved while  maintaining the  required level of large  neoplasms eradication in the  case  of X-ray and gamma  irradiation through ridge  filters  can be partially explained by the features of the physical distribution of the dose over the depth of the irradiated tissue,  namely, the “merging” of fields at depth. But the  good  results from  the  use of the  ‘hills and  valleys’ in radiation fields  created by the  modern radiation sources  have attracted attention to radiobiological issues for explaining the principal differences in reaction to  spatial fractionation of the  absorbed dose  between tumor and  normal tissues. We  are  talking about the  role  of the  so-called ‘communal effect/bystander effect’, the  effect  of radiation on the  immunological processes, the  differences in damage and  restoration of the  microvasculature in normal and  tumor tissue, etc. Although there  is the lot of publications concerning experimental studies of the effectiveness of ‘spatial dose fractionation’, as well as those  considering radiobiological mechanisms of the  observed expansion of the ‘therapeutic interval’, there  is still no clarity in this issue. The purpose of this review is to systematize the available data on the clinical  and experimental confirmation of the effectiveness of ‘spatial fractionation’ and the  various  explanations of its  advantages over conventional, uniform dose  distribution. Special  attention is paid  to the  issues  of combination of spatial fractionation with  superhigh dose rate  irradiation (FLASH-radiotherapy) on the  new  radiation facilities, including proton accelerators, which  are  now  in use in this country.

About the Authors

A. A. Wainson
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24, Kashirskoye Shosse, Moscow, 115478


Competing Interests:

Not declared



E. V. Solovieva
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

24, Kashirskoye Shosse, Moscow, 115478


Competing Interests:

Not declared



References

1. Griffin RJ, Ahmed MM, Amendola B, et al. Understanding high-dose, ultra-high dose-rate and spatially fractionated radiotherapy. Journal Preproof. Int J Radiat Oncol Biol Phys. 2020, S0360301620309585. DOI: 10.1016/j.ijrobp.2020.03.028.

2. Griffin RJ, Prise KM, McMahon SJ, et al. History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam and FLASH radiotherapy. Br J Radiol. 2020;93(1113):20200217. DOI: 10.1259/bjr.20200217. PMID: 32706989.

3. Aliev BM. Radiotherapy of Bulky Neoplastic Disease. 1978, Moscow. 176 p. (In Russian.)

4. Aliev BM, Gus’kova AK. Uneven irradiation of tumors (the problem of protecting normal tissues). Medical Radiology. 1975;20(2):74-87. (In Russian). PMID: 805889.

5. Aliev BM, Galina LS. Change of the coefficient of dosage irregularity in fractionated gamma therapy with the use of grid diaphragms. Medical Radiology. 1976;21(1):68-71. (In Russian). PMID:933738.

6. Aliev BM, Iushkov SF. Experimental study of the effect of nonuniform radiation. Medical Radiology. 1970;15(8):60-4. (In Russian). PMID: 5483892.

7. Ol’khovskaia IG, Aliev BM. Morphological changes in certain types of soft tissue sarcoma under the effect of uneven irradiation. Vestn Akad Med Nauk SSSR. 1976;(6):22-6. (In Russian). PMID:997847.

8. Kharitonova NT, Aliev BM. Concentrated-nonuniform irradiation of locally expanding esophageal cancer. Med Radiol. 1978;22(10):8-13. (In Russian). PMID:703551.

9. Yarmonenko SP, Aliev BM, Wainson AA. Therapeutic interval and the protection of normal tissues. Medical Radiology. 1979;24(12):22-6. (In Russian). PMID:513993.

10. Aliev BM, Klimenkov AA, Pirtuzilo MB, Cherkes VP. Gamma teletherapy of inoperable retroperitoneal tumors with nonuniform distribution of the dosage in the tissues. Problems in Oncology. 1980;26(12):53-8. (In Russian). PMID:7467211.

11. Mohiuddin M, Curtis DL, Grizos WT, Komarnicky L. Palliative treatment of advanced cancer using multiple noncon-fluent pencil beam radiation. A pilot study. Cancer. 1990;66(1):114-8. DOI: 10.1002/1097-0142(19900701)66:1<114::aid-cn-cr2820660121>3.0.CO;2-l.

12. Mohiuddin M, Stevens JH, Reiff JE, et al. Spatially fractionated (GRID) radiation for palliative treatment of advanced cancer. Radiat Oncol Investig Clin Basic Res. 1996;4:41-7. DOI: 10.1002/(SICI)1520-6823(1996)4:1<41::AID-ROI7>3.0.CO;2-M.13.

13. Mohiuddin M, Fujita M, Regine WF, et al. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys. 1999; 45(3):721-7. DOI:10.1016/s0360-3016(99)00170-4. PMID: 10524428.

14. Choi JI, Daniels J, Cohen D, et al. Clinical outcomes of spatially fractionated GRID radiotherapy in the treatment of bulky tumors of the head and neck. Cureus. 2019;11(5):e4637. DOI:10.7759/cureus.4637. PMCID: PMC6623998. PMID: 31312563.

15. Edwards J, Shah P, Huhn J, et al. Definitive GRID and fractionated radiation in bulky head and neck cancer associated with low rates of distant metastasis. Int J Radiat Oncol Biol Phys. 2015;93:E334. DOI: 10.1016/j.ijrobp.2015.07.1399.

16. Snider JW, Molitoris J, Shyu S, et al. Spatially fractionated radiotherapy (GRID) prior to standard neoadjuvant conventionally fractionated radiotherapy for bulky, high-risk soft tissue and osteosarcomas: feasibility, safety, and promising pathologic response rates. Radiat Res. 2020;194(6):707-14. DOI: 10.1667/RADE-20-00100.1. PMID: 33064802.

17. Grams MP, Owen D, Park SS, et al. VMAT Grid therapy: a widely applicable planning approach. Pr Radiat Oncol. 2021;11:e339-e347. DOI: 10.1016/j.prro.2020.10.007.

18. Duriseti S, Kavanaugh JA, Szymanski J. LITE SABR M1: A phase I trial of lattice stereotactic body radiotherapy for large tumors. Radiother Oncol. 2022;167:317-22. DOI: 10.1016/j.radonc.2021.11.023.

19. Maghaddasi L, Reid P, Bezak E, Marcu LG. Radiobiological and treatment-related aspects of spatially fractionated radiotherapy. Int J Mol Sci. 2022;23(6):3366. DOI: 10.3390/ijms23063366. PMID: 35328787. PMCID: PMC8954016.

20. Dilmanian FA, Button TM, Le Duc G, et al. Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro-Oncology. 2022;4:26-38. DOI: 10.1215/15228517-4-1-26.

21. Crosbie JC, Anderson RL, Rothkamm K, et al. Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues. Int J Radiat Oncol Biol Phys. 2010;77:886-94. DOI: 10.1016/j.ijrobp.2010.01.035.

22. Suchowerska N, Ebert MA, Zhang M, Jackson M. In vitro response of tumour cells to non-uniform irradiation. Phys Med Biol. 2005;50(13):3041-51. DOI: 10.1088/0031-9155/50/13/005. PMID: 15972979.

23. Peng V, Suchowerska N, Rogers L, et al. Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncol. 2017;56(8):1048-59. DOI: 10.1080/0284186X.2017.1299939. PMID: 28303745.

24. Lebedeva NYe, Wainson AA, Kuzin AM. Interaction of quinones with cell nuclei. pp. 51-57. In the book Radiotoxins, ed. by Kuzin AM. Moscow. 1966. 293 p. (In Russian).

25. Asur R, Butterworth KT, Penagaricano JA, et al. High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett. 2015;356(1):52-7. DOI: 10.1016/j.canlet.2013.10.032. PMID: 24246848.

26. Pakniyat F, Ali Nedaie HA, Mozdarani H, et al. Enhanced response of radioresistant carcinoma cell line to heterogeneous dose distribution of grid; the role of high-dose bystander effect. Int J Radiat Biol. 2020;96(12):1585-96. DOI: 10.1080/09553002.2020.1834163.

27. Eling L, Bouchet A, Ocadiz A, et al. Unexpected benefits of multiport synchrotron microbeam radiation therapy for brain tumors. Cancers. 2021;13:936. DOI: 10.3390/cancers13050936.

28. Bouchet A, Serduc R, Laissue JA, Djonov V. Effects of microbeam radiation therapy on normal and tumoral blood vessels. Phys Med. 2015;31:634-64. DOI: 10.1016/j.ejmp.2015.04.014.

29. Brönnimann D, Bouchet A, Schneider C, et al. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci Rep. 2016;19(6):33601. DOI: 10.1038/srep33601. PMID: 27640676.

30. Bertho A, Iturri L, Brisebard E, Juchaux M, et al. Evaluation of the role of the immune system response after minibeam radiation therapy. Int J Radiat Oncol Biol Phys. 2023;115(2):426-39. DOI: 10.1016/j.ijrobp.2022.08.011.

31. Zhang H, Wu X, Zhang X, et al. Photon GRID radiation therapy: A physics and dosimetry white paper from the radiosurgery society (RSS) GRID/LATTICE, microbeam and FLASH radiotherapy working group. Radiat Res. 2020;194:665-77. DOI: 10.1667/RADE-20-00047.1.


Review

For citations:


Wainson A.A., Solovieva E.V. Spatial Fractionation in Tumor Radiotherapy and Discussed Mechanisms of the Therapeutic Window Extension. Journal of oncology: diagnostic radiology and radiotherapy. 2023;6(1):9-18. (In Russ.) https://doi.org/10.37174/2587-7593-2023-6-1-9-18

Views: 283


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)