Preview

Онкологический журнал: лучевая диагностика, лучевая терапия

Расширенный поиск

Бор-нейтронозахватная терапия злокачественных опухолей: основы, история и текущее состояние

https://doi.org/10.37174/2587-7593-2019-2-2-66-83

Полный текст:

Аннотация

Рассмотрены основы бор-нейтронозахватной  терапии злокачественных опухолей, представлена краткая история ее развития и приведен аналитический обзор современного состояния бор-нейтронозахватной терапии в области разработки источников эпитепловых нейтронов на основе ускорителей заряженных частиц.

Об авторе

С. Ю. Таскаев
Институт ядерной физики им. Г.И. Будкера СО РАН; Новосибирский государственный университет
Россия
Новосибирск.


Список литературы

1. Sauerwein W., Wittig A., Moss R., Nakagawa Y. (editors). Neutron Capture Therapy: Principles and Applications. – Springer, 2012. 553 p.

2. Таскаев C. Ю., Каныгин В. В. Бор-нейтронозахватная терапия. – Новосибирск: Издательство СОРАН, 2016. 216 с.

3. Locher G.L. Biological effects and therapeutic possibilities of neutrons // Amer. J. Roentgenol. Radium Ther. 1936. Vol. 36. № 1. P. 1–13.

4. Chadwick J. The existence of a neutron // Proc. R. Soc. London. 1932. Vol. A 136. P. 692–708.

5. Taylor H.J., Goldhaber M. Detection of nuclear disintegration in a photographic emulsion // Nature (London). 1935. Vol. 135. P. 341–348.

6. Sheino I., Khokhlov V., Kulakov V., Zaitsev K. Estimation of neutron kerma in biological tissue containing boron and gadolinium compounds for neutron capture therapy// In: Proc. Intern. Symposium on Boron Neutron Capture Therapy. S. Taskaev (ed.). July 7–9, 2004, Novosibirsk, Russia. 2004. P. 99–110.

7. Matsumoto T. Transport calculations of depth-dose distributions for gadolinium neutron capture therapy // Phys. Med. Biol. 1992. Vol. 37. P. 155–162.

8. Khokhlov V., Yashkin P., Silin D. et al. Neutron capture therapy with gadopentetate dimeglumine: experiments on tumor-bearing rats // Acad. Radiol. 1995. Vol. 2. № 5. P. 392–398.

9. Takahashi K., Nakamura H., Furumoto S. et al. Synthesis and in vivo biodistribution of BPA-Gd-DTPA complex as a potential MRI contrast carrier for neutron capture therapy // Bioorg. Med. Chem. 2005. Vol. 13. № 3. P. 735–743.

10. Stalpers L., Stecher-Rasmussen F., Kok T. et al. Radiobiology of gadolinium neutron capture therapy// In: Research and development in neutron capture therapy. Sauerwein W., Moss R., Wittig A. (eds.). Monduzzi Editore, Bologna. 2002. P. 825–830.

11. Cerullo N., Bufalino D., Daquino G. Progress in the use of gadolinium for NCT // Appl. Radiat. Isot. 2009. Vol. 67. № 7–9. P. S157–S160.

12. Zaitsev K., Portnov A., Sakharov V. et al. NCT at the MEPhI reactor // In: Proc. Intern. Symposium on Boron Neutron Capture Therapy. S. Taskaev (ed.). July 7–9, 2004, Novosibirsk, Russia. 2004. P. 82–98.

13. Kruger P. Some biological effects of nuclear disintegration products on neoplastic tissue // Proc. Natl. Acad. Sci. USA. 1940. Vol. 26. P. 181–192.

14. Sweet W. The uses of nuclear disintegration in the diagnosis and treatment of brain tumor // Nucl. Engl. J. Med. 1951. Vol. 245. P. 875–878.

15. Sweet W., Javid M. The possible use of slow neutrons plus boron-10 in the therapy of intracranial tumors // Trans. Amer. Neurol. Assoc. 1951. Vol. 76. P. 60–63.

16. Farr L., Sweet W., Robertson J. et al. Neutron capture therapy with boron in the treatment of glioblastoma multiforme // Amer. J. Roeng. Ther. Nucl. Med. 1954. Vol. 71. P. 279–293.

17. Goldwin J., Farr L., Sweet W., Robertson J. Pathology study of eight patients with glioblastoma multiforme treated by neutron capture therapy using boron-10 // Cancer. 1955. Vol. 8. P. 601–615.

18. Slatkin D. A history of boron neutron capture therapy of brain tumours // Brain. 1991. Vol. 114. P. 1609–1629.

19. Sauerwein W. Principles and history of neutron capture therapy // Strahlenther. Onkol. 1993. Vol. 169. № 1. P. 1–6.

20. Soloway A., Hatanaka H., Davis M. Penetration of brain and brain tumor. VII. Tumor binding sulfhydryl boron compounds // J. Med. Chem. 1967. Vol. 10. P. 714–717.

21. Hatanaka H. Clinical results of boron neutron capture therapy // Basic Life Sci. 1990. Vol. 54. № 15. P. 15–21.

22. Mishima Y., Ichihashi M., Hatta S. et al. Selective thermal neutron capture therapy and diagnosis of malignant melanoma: from basic studies to first clinical treatment// Basic Life Sci. 1989. Vol. 50. P. 251–260.

23. Chanana A., Capala J., Chadha M. et al. Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies // Neurosurgery. 1999. Vol. 44. № 6. P. 1182–1193.

24. Busse P., Harling O., Palmer M. et al. A critical examination of the results from the Harvard-MIT NCT program phase I clinical trials of neutron capture therapy for intracranial disease // J. Neuro-Oncol. 2003. Vol. 62. № 1–2. P. 111–121.

25. Sauerwein W., Zurlo A. The EORTC boron neutron capture therapy (BNCT) group: achievements and future projects // Eur. J. Cancer. 2002. Vol. 38. Suppl. 4. P. S31– S34.

26. Joensuu H., Kankaanranta L., Seppala T. et al. Boron neutron capture therapy of brain tumors: clinical trials at the finish facility using boronophenylalanine // J. Neuro-Oncol. 2003. Vol. 62. № 1–2. P. 123–134.

27. Capala J., Stenstam B., Sköld K. et al. Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden // J. Neuro-Oncol. 2003. Vol. 62. № 1–2. P. 135–144.

28. Dbaly V., Tovarys F., Honova H. et al. Contemporary state of neutron capture therapy in Czech Republic (part 2) // Čes. a Slov. Neurol. Neurochir. 2002. Vol. 66/99. № 1. P. 60–63.

29. Nakagawa Y., Pooh K., Kobayashi T. et al. Clinical review of the Japanese experience with boron neutron capture therapy and proposed strategy using epithermal neutron beams // J. Neuro-Oncol. 2003. Vol. 62. № 1–2. P. 87–99.

30. González S., Bonomi M., Santa Cruz G. et al. First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome // Appl. Radiat. Isot. 2004. Vol. 61. № 5. P. 1101–1105.

31. Liu Y.-W., Huang T., Jiang S., Liu H. Renovation of epithermal neutron beam for BNCT at THOR // Appl. Radiat. Isot. 2004. Vol. 61. № 5. P. 1039–1043.

32. Kato I., Ono K., Sakurai Y. et al. Effectivenes of BNCT for recurrent head and neck malignancies // Appl. Radiat. Isot. 2004. Vol. 61. № 5. P. 1069–1073.

33. Kankaanranta L., Seppala T., Koivunoro H. et al. Boron neutron capture therapy in the treatment of locally recurred head and neck cancer // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 69. № 2. P. 475–482.

34. Tamura Y., Miyatake S., Nonoguchi N. et al. Boron neutron capture therapy for recurrent malignant melanoma. Case report // J. Neurosurg. 2006. Vol. 105. № 6. P. 898–903.

35. Suzuki M., Endo K., Satoh H. et al. A novel concept of treatment of diffuse or multiple pleural tumors by boron neutron capture therapy (BNCT) // Radiother. Oncol. 2008. Vol. 88. № 2. P. 192–195.

36. Suzuki M., Sakurai Y., Hagiwara S. et al. First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma // Jpn. J. Clin. Oncol. 2007. Vol. 37. № 5. P. 376–381.

37. Liu H., Brugger R., Rorer D. et al. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor // Med. Phys. 1994. Vol. 21. P. 1627–1631.

38. Rogus R., Harling O., Yanch J. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor // Med. Phys. 1994. Vol. 21. P. 1611–1625.

39. Hatanaka H. A revised boron-neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments // J. Neurol. 1975. Vol. 209. P. 81–94.

40. Ke G., Sun Z., Shen F. et al. The study of physics and thermal characteristics for in hospital neutron irradiator (IHNI) // Appl. Radiat. Isot. 2009. Vol. 67. №. 7–8. P. S234–S237.

41. Moss R., Stecher-Rasmussen F., Ravensberg K. et al. Design, construction and installation of an epithermal neutron beam for BNCT at the high flux reactor Petten// In: Progress in Neutron Capture Therapy for Cancer. Allen B., et al. (eds.). Plenum Press, New York. 1992. P. 63–66.

42. Harling O., Riley K. Fission reactor neutron sources forneutron capture therapy – a critical review // J. Neuro-Oncol. 2003. Vol. 62. P. 7–17.

43. Binns P., Riley K., Harling O. Epithermal neutron beams for clinical studies of boron neutron capture therapy: a dosimetric comparison of seven beams // Radiat. Res. 2005. Vol. 164. № 2. P. 212–220.

44. Akutsu H., Yamamoto T., Matsumura A. et al. Medical setup of intraoperative BNCT at JRR-4 // Proc. 9th Int. Symp. Neutron Capture Therapy, October 2–6, 2000, Osaka, Japan. 2000. P. 199–200.

45. Sakurai Y., Kobayashi T. The medical-irradiation characteristics for neutron capture therapy at the heavy water neutron irradiation facility of Kyoto University Research Reactor // Med. Phys. 2009. Vol. 29. P. 2328–2337.

46. Binns P., Riley K., Ostrovsky Y. et al. Improved dose targeting for a clinical epithermal neutron capture beam using optional 6Li filtration //Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 67. P. 1484–1491.

47. Riley K., Binns P., Harling O. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams // Phys. Med. Biol. 2004. Vol. 49. P. 2015–2028.

48. Raaijmakers C., Konijnenberg M., Mijnheer B. Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions // Int. J. Radiat. Oncol. Biol. Phys. 1997. Vol. 37. P. 941–951.

49. Auterinen I., Kotiluoto P., Hippeläinen E. et al. Design and construction of shoulder recesses into the beam aperture shields for improved patient positioning at the FiR1 BNCT facility // Appl. Radiat. Isot. 2004. Vol. 61. №. 5. P. 799–803.

50. Yamamoto Y., Matsumura A., Shibata Y. et al. Radiobiological characterization of epithermal and mixed thermal-epithermal beams at JRR-4 //Proc. 9th Intern. Symp. Neutron Capture Therapy, October 2–6, 2000, Osaka, Japan. 2000. P. 205–206.

51. Таскаев С.Ю. Ускорительный источник эпитепловых нейтронов // Физика элементарных частиц и атомного ядра. 2015. Т. 46. № 6. С. 1770–1830.

52. Blue T., Yanch J. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors // J. Neuro-Oncol. 2003. Vol. 62. P. 19–31.

53. Lee C., Zhou X. Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold // Nucl. Instrum. Meth. B. 1999. Vol. 152. P. 1–11.

54. Wang C., Blue T., Gabauer R. A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy // Nucl. Technol. 1989. Vol. 84. P. 93–107.

55. Yanch J., Zhou X., Shefer R., Klinkowstein R. Accelerator-based epithermal neutron beam design for neutron capture therapy // Med. Phys. 1992. Vol. 19. P. 709–721.

56. Anderson O., Alpen E., Kwan J. et al. ESQ-focused 2.5 MeV dc accelerator for BNCT // Proc. 4th Europ. Particle Accelerator Conf., June 27 – July 21, 1994, London. 1994. P. 2619–2621.

57. Proc. 1 st International Workshop on Accelerator-based Neutron Sources for BNCT. Jackson, WN, USA. CONF-940976, 1994.

58. Kato T., Hirose K., Tanaka H. et al. Quality assurance of an accelerator-based boron neutron capture therapy system: Dosimetric and mechanical aspects based on initial experience // Abstract Book of the 18th Int. Cong. Neutron Capture Therapy, October 28 – November 2, 2018, Taipei, Taiwan. 2018. P. 217–219.

59. Tahara Y., Abe S., Akiyama Y. et al. A BNCT neutron generator using a 30 MeV proton beam // Advanced in Neutron Capture Therapy 2006. Proc. 12th Int. Cong. Neutron Capture Therapy. October 9–13, 2006. Takamatsu, Kagawa, Japan. 2006. P. 327–330.

60. Tanaka H., Sakurai Y., Suzuki M. et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS) // Appl. Radiat. Isot. 2011. Vol. 69. № 12. P. 1642–1645.

61. Mitsumoto T., Yajiima S., Tsutsui H. et al. Cyclotron-based neutron source for BNCT // Proc. XIV Int. Cong. Neutron Capture Therapy, October 25–29, 2010, Buenos Aires, Argentina. 2010. P. 510–522.

62. Masui S., Asano T. Current Status of BNCT Clinical Trials in Japan // Abstract Book of the 18th Int. Cong. Neutron Capture Therapy, October 28 – November 2, 2018, Taipei, Taiwan. 2018. P. 93–94.

63. Kumada H., Matsumura A., Sakurai H. et al. Project for the development of the linac based NCT facility in University of Tsukuba // Appl. Radiat. Isot. 2014. Vol. 88. P. 211–215.

64. Kumada H., Kurihara H., Yoshioka M. et al. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy// Appl. Radiat. Isot. 2015. Vol. 106. P. 78–83.

65. Abe Y., Fuse M., Fujii R. et al. Hospital-based boron neutron capture therapy in National Cancer Center. An installation design for the accelerator-based epithermal neutron source // Abstracts of 15th Int. Cong. Neutron Capture Therapy, 10–14 Sept. 2012, Tsukuba, Japan. 2012. P. 109–110.

66. Willis C., Lenz J., Swenson D. High-power lithium target for accelerator-based BNCT // Proc. XXIV Linear Accelerator Conf., 29 Sept. – 3 Oct.2008, Victoria, British Columbia, Canada. 2008. P. 223–225.

67. Smick T., Ryding G., Farrell P. et al. Hyperion™ Accelerator Technology for Boron Neutron Capture Therapy // Book of abstracts of the 16th Int. Cong. Neutron Capture Therapy, June 14–19, 2014, Helsinki, Finland. 2014. P. 138–139.

68. Porra L., Seppala T., Vaalavirta L. et al. Commisioning of the nuBeam BNCT neutron source at Helsinki University Hospital Cancer Center // Abstract Book of the 18th Int. Cong. Neutron Capture Therapy, Oct. 28 – Nov. 2, 2018, Taipei, Taiwan. 2018. P. 72–73.

69. Smick N., Park W. Hyperion Accelerator Technology for BNCT // Book of Abstracts of the Workshop on Accelerator Based Neutron Production, April 14–15, 2014, Padova, Italy. 2015. P. 14.

70. Bayanov B., Belov V., Bender E. et al. Accelerator based neutron source for the neutron-capture and fast neutron therapy at hospital // Nucl. Instr. Methods Phys. Res. A. 1998. Vol. 413. P. 397–426.

71. Таскаев С. Ю. Ускорительный источник эпитепловых нейтронов – Новосибирск: Дисс. докт. физ. -мат. наук. 2014. 295 с.

72. Зайди Л., Кашаева Е. А., Лежнин С. И. и соавт. Система формирования пучка нейтронов для борнейтронозахватной терапии // Ядерная физика. 2017. Т. 80. № 1. С. 63–69.

73. Zaidi L., Belgaid M., Taskaev S., Khelifi R. Beam Shaping Assembly Design of 7Li(p,n)7Be Neutron Source for Boron Neutron Capture Therapy of Deep-seated Tumor//Appl. Radiat. Isot. 2018. Vol. 139. P. 316–324.

74. Ivanov A., Kasatov D., Koshkarev A. et al. Suppression of an unwanted flow of charged particles in a tandem accelerator with vacuum insulation // JINST. 2016. Vol. 11. P04018.

75. Быков Т. А., Касатов Д. А., Колесников Я. А. и соавт. Измерение проволочным сканером пучка отрицательных ионов водорода, инжектируемого в ускоритель-тандем с вакуумной изоляцией // Приборы и техника эксперимента. 2018. № 5. С. 90–95.

76. Касатов Д. А., Макаров А. Н., Таскаев С. Ю., Щудло И. М. Излучение при поглощении протонов с энергией 2 МэВ в различных материалах // Ядерная физика. 2015. Т. 78. № 11. С. 963–969.

77. Badrutdinov A., Bykov T., Gromilov S. et al. In situ Observations of Blistering of a Metal Irradiated with 2-MeV Protons // Metals. 2017. Vol. 7. № 12. 558.

78. Bayanov B., Belov V., Taskaev S. Neutron producing target for accelerator based neutron capture therapy // J. Phys.: Conf. Series. 2006. Vol. 41. P. 460–465.

79. Таскаев С.Ю., Баянов Б.Ф. Нейтроногенерирующая мишень // Патент РФ на изобретение № 2610301 от 09.02.2017.

80. Sato E., Zaboronok A., Yamamoto T. et al. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy // J. Radiat. Res. 2018. Vol. 59. № 2. P. 101–107.


Для цитирования:


Таскаев С.Ю. Бор-нейтронозахватная терапия злокачественных опухолей: основы, история и текущее состояние. Онкологический журнал: лучевая диагностика, лучевая терапия. 2019;2(2):66-83. https://doi.org/10.37174/2587-7593-2019-2-2-66-83

For citation:


Taskaev S.Yu. Boron Neutron Capture Therapy of Malignant Tumors: Basics, History and Status. Journal of oncology: diagnostic radiology and radiotherapy. 2019;2(2):66-83. (In Russ.) https://doi.org/10.37174/2587-7593-2019-2-2-66-83

Просмотров: 118


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)