Preview

Онкологический журнал: лучевая диагностика, лучевая терапия

Расширенный поиск

Протонная лучевая терапия: современное состояние и перспективы. Часть II. Радиобиологические и клинические аспекты

https://doi.org/10.37174/2587-7593-2019-2-1-5-20

Полный текст:

Аннотация

Приведен аналитический обзор современного состояния протонной терапии в мире и в России, в частности, в области относительной биологической эффективности протонного облучения, клинических показаний к его применению, стоимости протонной терапии, перспектив ее дальнейшего развития и др. Часть I статьи опубликована в №4 журнала за 2018 г.

Об авторах

В. А. Климанов
Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России; Национальный исследовательский ядерный университет «МИФИ»; Московский государственный университет им. М.В. Ломоносова
Россия

Москва



Ж. Ж. Галяутдинова
Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России
Россия

Москва



М. В. Забелин
Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России
Россия

Москва



Список литературы

1. Wilson R.R. Radiological use of fast proton // Radiology. Vol. 47. 1946. P. 487-491.

2. Lawrence J.H. et al. Pituitary irradiation with high-energy proton beams: a preliminary report // Cancer Res. Vol. 18. 1958. P. 121-134.

3. PTCOG. PTCOG patient statistics of particle therapy centers per end of 2014. 2015.

4. Newhauser W.D., Zhang R. The physics of proton therapy. // Phys. Med. Biol. 2015. Vol. 60. P R155 - R209.

5. Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams // Med. Phys. 1997. Vol. 24. № 12. P 2024-2033.

6. ICRU Report 49: Stopping Powers and Ranges for Protons and Alpha Particles. Bethesda, MD. 1993.

7. Mazal A. Proton beams in radiotherapy // In: Handbook of Radiotherapy Physics. Eds. P Mayles, A. Nahum, J. C. Rosenwald. 2007. Taylor&Francis Group. P. 1005— 1032.

8. Preston W.M., Koehler A.M. Proton beam dosimetry. 1968. Harvard Cyclotron Laboratory, personal communication.

9. Sjirk Niels Boon. Dosimetry and quality control of scanning beams. Thesis. 1968. Groningen.

10. Кленов Г.И., Хорошков В.С., Черных А.Н. Ускорители для протонной лучевой терапии // Мед. физика. 2014. № 1(61). С. 5-17.

11. http://www.protom.ru.

12. Кац М.М. Развитие центров терапии пучками протонов и ионов. Обзор // Мед. физика. 2005. № 2. С. 25-39.

13. Kats M.M. Compact and non expensive systems for transport proton and ion beams between of medical accelerator and fixated horisontally patient at many directions // Report on RuPAC 2008. Zvenigorod, Russia, 2008.

14. Koehler A.M., Schneider R.J., Sisterson J.M. Range modulator for proton and heavy ions // Nucl. Instrum. Methods. Vol. 131. 1975. P. 437-440.

15. Smith A.R. Proton therapy // Med. Phys. 2009. Vol. 36. № 2. P. 556-568.

16. Климанов В.А. Радиобиологическое и дозиметрическое планирование лучевой и радионуклидной терапии. Часть 2ю - М.: Изд-во НИЯУ МИФИ. 2011.

17. Berger M.J. Penetration of proton beams trough water I. Depth-dose distribution, spectra and LET distribution // Report NISTIR 5226. National Institute of Standards and Technology, Physics Laboratory, Gaisersburg. 1993.

18. Abramowitz M., Stegun I.A. Eds. Handbook of Mathematical Functions. - New York: Dover. 1972.

19. Koch N., Newhauser W. Virtual commissioning of a treatment planning system for proton therapy of ocular cancers // Radiat. Prot. Dosim. 2005. Vol. 115. P. 159163.

20. Hogstrom K.R., Mills M.D., Almond P.R. Electron beam dose calculations // Phys. Med. Biol. 1981. Vol. 26. P. 445-459.

21. Hong L., Gotein M., Buccuilini M. et al. Pencil beam algorithm for proton dose calculations // Phys. Med. Biol. V 41, 1996, P. 1305-1330.

22. Schaffner B., Pedroni E., Lomax A. Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation // Phys. Med. Biol. 1999. Vol. 44. P. 27-41.

23. Szymanowski H., Oelfke U. 2D pencil beam scaling: an improved proton dose algorithm for heterogeneous media // Phys. Med. Biol. 2002. Vol. 47. P. 3313-3331.

24. Ciangaru G., PolfJ. C., Bues M., Smith A.R. Benchmarking analytical calculations of proton doses in heterogeneous matter // Med. Phys. 2005. Vol. 32. P. 3511-3523.

25. Westerly D. C., Mo X., Tome W. A. et al. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries // Med. Phys. 2013.Vol. 40. P. 061706.

26. Schaffner B. Proton dose calculation based on in-air fluence measurements // Phys. Med. Biol. 2008. Vol. 53. P. 1545-1562.

27. Parodi K., Mairani A., Sommerer F. MC-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams // J. Radiat. Res. 2013. Vol. 54. P. 191- 196.

28. Pelowitz D.B. MCNPX User’s Manual, Version 2.7.0. Los Alamos National Laboratory. 2011.

29. Agostinelli S., Allison J., Amako K., Apostolakis J. Geant4 - a simulation toolkit // Nucl. Instrum. Methods. A. 2003. Vol. 506. P. 250-303.

30. Zhang R., Fontenot J., Mirkovic D. et al. Advantages of MCNPX-based lattice tally over mesh tally in highspeed Monte Carlo dose reconstruction for proton radiotherapy // Nucl. Technol. 2013. Vol. 183. P. 101 -106.

31. Taddei P.J. et al. Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams // Phys. Med. Biol. 2009. Vol. 54. P. 2259-2275.

32. Jia X., Schumann J., Paganetti H., Jiang S. B. GPU-based fast Monte Carlo dose calculation for proton therapy // Phys. Med. Biol. 2012. Vol. 57. P. 7783-7797.

33. Vadapalli R., Yepes P, Newhauser W.D., Lichti R. Grid-enabled treatment planning for proton therapy using Monte Carlo simulations // Nucl. Technol. 2011. Vol. 175. P 16-21.

34. Janni J.F. Proton range energy tables, 1 keV-10 GeV Atomic Data // Nucl. Data Tables 1982. Vol. 27. P. 147529.

35. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy variations as a function of biological endpoint, dose and linear energy transfer // Phys. Med. Biol. 2014. Vol. 59. P R419-R472.

36. https://www.oncolink.org/cancer-treatment/proton-therapy/overviews-of-proton-therapy/ocular-melanoma-and-proton-therapy.

37. Damato B. Developments in the management of uveal melanoma // Clin. Exper. Ophthalmol. 2004. Vol. 32. P. 639-647.

38. Мицын Г.В., Ольшевский А.Г., Сыресин Е.М. Протонная терапия сегодня и завтра // Еженедельник ОИЯИ “Дубна”. 2008. № 32.

39. Goitein G.P Proton Radiation Therapy of Ocular Melanom // Teaching Course 2010 OPTIS PTCOG 49. 2010.

40. №эё! G., Bollet M.A., Calugaru V. et al. Functional outcome of patients with benign meningioma treated by 3D conformal irradiation with a combination of photons and protons // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 62. № 5. P 1412-1422.

41. Wenkel E., Thornton A.F., Finkelstein D. et al. Benign meningioma: partially resected, biopsied and recurrent intracranial tumors treated with combined proton and photon radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2000. Vol. 48. № 5. P 1363-1370.

42. Vernimmen et al. Stereotactic proton beam therapy of skull base meningiomas // Int. J. Radiat. Oncol. Biol. Phys. 2001. Vol. 49 № 1. P. 99-105.

43. Romb B., Vennarini S., Vinante L. et al. Proton radiotherapy for pediatric tumors: review of first clinical results // Ital. J. Pediatr. 2014. Vol. 40. P. 74.

44. Robison L.L., Armstrong G.T., Boice J.D. et al. The childhood cancer survivor study: a National Cancer Institute-supported resource for outcome and intervention research // J. Clin. Oncol. 2009. Vol. 27. № 14. P. 2308-2318.

45. Ishida Y., Sakamoto N., Kamibeppu K. et al. Late effects and quality of life of childhood cancer survivors: part 2: impact of radiotherapy // Int. J. Hematol. 2010. Vol. 92. № 1. P. 95-104.

46. Fischer E.G., Welch K., Shillito J. et al. Craniopharyngioma in children: long-term effects of conservative surgical procedures combined with radiation therapy // J. Neurosurg. 1990. Vol. 73. № 4. P 534-540.

47. Schell M.J., McHaney V.A. et al. Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation // J. Clin. Oncol. 1989. Vol. 7. № 6. P. 754-760. Pubmed 2715805.

48. Adan L., Trivin C. et al. GH deficiency caused by cranial irradiation during childhood: factors and markers in young adults // J. Clin. Endocrinol. & Metabolism. 2001. Vol. 86. № 1. P 5245-5251.Pubmed 11701685.

49. Schell M.J., McHaney V.A. et al. Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation // J. Clin. Oncol. 1989. Vol. 7. № 6. P. 754-760. Pubmed 2715805.

50. Dores G.M., Metayer, C. et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years // J. Clin. Oncol. 2002. Vol. 20. № 16. P 3484-3494. Pubmed 12177110.

51. Mulhern R.K., Palmer S.L. Neurocognitive late effects in pediatric cancer // Current Problems in Cancer. 2003. Vol. 27. № 4. P 177-197. Pubmed 12855950.

52. Cotter S.E., McBride S.M., Yock T.I. Proton radiotherapy for solid tumors of childhood // Technol. Cancer Res. Treatment. Vol. 11. № 3. 2012. P 267-278.

53. Clarke M., Collins R., Darby S. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials // Lancet. 2005. Vol. 366. № 9503. P. 2087-2106.

54. Li J.S., Freedman G.M., Price R. et al. Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer // Med. Phys. 2004. Vol. 31. № 5. P. 1023-1031.

55. Seidman A., Hudis C., Pierri M.K. et al. Cardiac dysfunction in the trastuzumab clinical trials experience // Clin. Oncol. 2002. Vol. 20. № 5. P 1215-1221.

56. Mantini G, Smaniotto D, Balducci M. Radiation-induced cardiovascular disease: impact of dose and volume // Rays. 2005. Vol. 30. № 2. P. 157-168.

57. Bhatnagar A.K., Brandner E., Sonnik D. et al. Intensity-modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation: initial report // Cancer J. 2004. Vol. 10. P. 381-385.

58. Hall E.J. Intensity-modulated radiation therapy, protons, and the risk of second cancers // Int J. Radiat. Oncol. Biol. Phys. 2006. Vol. 65. № 1. P. 1-7.

59. Burman C., Chui C.S. et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate // Int. J. Radiat. Oncol. Biol. Phys. 1997. Vol. 39. № 4. P. 863-873.

60. Shipley W.U. et al. Proton radiation as boost therapy for localized prostatic arcinoma // JAMA. 1979. Vol. 241. № 18. P 1912-1915.

61. Sejpal S., Komaki R., Tsao A. et al. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer // Cancer. 2011. Vol. 117. № 13. P. 3004-3013.

62. Bradley J.D., Paulus R., Komaki R. et al. A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617 // Lancet Oncology. 2015. Vol. 16. № 2. P. 187-199.

63. Goitein M., Cox J. Should randomized clinical trial be required for proton radiotherapy? // J. Clin. Oncol. 2008. Vol. 26. P 175-176.

64. Suit H. et al. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No// Radiother. Oncol. 2008. Vol. 86. P. 148153.

65. Cotter S.E., Herrup D.A., Friedmann A. et al. Proton radiotherapy for pediatric bladder/prostate rhabdomyosarcoma: clinical outcomes and dosimetry compared to intensity modulated radiation therapy // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81. P. 13671373.

66. Brodin N.P., Munck A.F., Rosensch P et al. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma // Acta Oncol. 2011. Vol. 50. P. 806816.

67. Kristensen I., Nilsson K., Nilsson P. Comparative proton and photon treatment planning in pediatric patients with various diagnoses // Int. J. Particle Therapy. 2015. Vol. 3. P. 367-375.

68. Keil E., Sessler A.M., Trbojevic D. Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design // Phys. Rev. ST Accel. Beams. 2007. Vol. 10. P 054701.

69. Caporaso G.J. et al. A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator // Phys. Medica. 2008. Vol. 24. P. 98-101.

70. Lu H. M., Brett К., Shapr G. et al. A respiratory-gated treatment system for proton therapy // Med. Phys. 2007. Vol. 34. P. 3273-3278.

71. Furukawa T., Inaniwa T., Sato S. et al. Design study of a raster scanning system for moving target irradiation in heavy-ion therapy // Med. Phys. 2007. Vol. 34. P. 10851097.

72. Bert C., Laito N., Schmidt A. Target motion tracking with scanned particle beam // Med. Phys. 2007. Vol. 34. P. 4768-4771.

73. Bert C., Durante M. Motion in radiotherapy: particle therapy // Phys. Med. Biol. 2011. Vol. 56. P. R113-R144.

74. Newhauser W. et al. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm // Phys. Med. Biol. 2007. Vol. 52. P. 4569-4584.

75. Pflugfelder D., Wilkens J.J., Oelfke U. Worst case optimization: A method to account for uncertainties in the optimization of intensity modulated proton therapy // Phys. Med. Biol. 2008. Vol. 53. P. 1689-1700.

76. Liao L, Lim G.J., Li Y. Robust Optimization for intensity modulated proton therapy plans with multi-isocenter large fields // Int. J. Particle Therapy. 2016. Vol. 4. P. 305311.

77. Parodi K. et al. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 68. P. 920-934.

78. Nishio T., Ogino T. Dose-volume delivery guided proton therapy using beam on-line PET system // Med. Phys. 2006. Vol. 33. P. 4190-4197.

79. Cormack A.M. Representation of a function by its line integrals with some radiological applications // J. Appl. Phys. 1963. Vol. 34. P. 2722-2727.

80. De Assis J.T. et al. Proton computed tomography as a tool for proton therapy planning: Preliminary computer simulations and comparisons with x-ray CT basics // X-Ray Spectrom. 2005. Vol. 34. P. 481-492.

81. Goitein M., Jermann M. The relative costs of proton and x-ray radiation therapy // Clin. Oncol. 2003. Vol. 15. P. S37-S50.

82. Mailhot V., Kim J., Bussiere M. Cost effectiveness of proton therapy compared with photon therapy in the management of pediatric medulloblastoma // Cancer. 2013. Vol. 119. № 24. P. 4299-4307.

83. Reiazi R., Norozi A., Etedadialiabadi M.A. Literature survey on cost-effectiveness of proton beam therapy in the management of breast cancer patients // Iran J. Cancer Prev. 2015. Vol. 8. №6. P. 4373.


Для цитирования:


Климанов В.А., Галяутдинова Ж.Ж., Забелин М.В. Протонная лучевая терапия: современное состояние и перспективы. Часть II. Радиобиологические и клинические аспекты. Онкологический журнал: лучевая диагностика, лучевая терапия. 2019;2(1):5-20. https://doi.org/10.37174/2587-7593-2019-2-1-5-20

For citation:


Klimanov V.A., Galjautdinova J.J., Zabelin M.V. Proton Radiotherapy: Current Status and Future Prospects. Part 2. Radiobiological and clinical aspects. Journal of oncology: diagnostic radiology and radiotherapy. 2019;2(1):5-20. (In Russ.) https://doi.org/10.37174/2587-7593-2019-2-1-5-20

Просмотров: 149


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)