Radiation-Induced Lung Injury
https://doi.org/10.37174/2587-7593-2020-3-2-9-18
Abstract
Along with surgery and chemotherapy, radiation therapy is the main treatment for malignant tumors. This treatment method is often accompanied by various side effects. They are based on damage to the structure of cells by ionizing radiation. At present, criteria for the assessment of radiation injuries have been developed. One of these injuries is radiation pulmonitis, which can adversely affect the quality of life of patients. Thanks to the introduction into clinical practice of modern methods of radiation therapy, radiation diagnostics and the latest drugs, it became possible to minimize the risk of radiation pulmonitis after treatment.
About the Authors
I. A. GladilinaRussian Federation
24 Kashirskoye Highway, Moscow, 115478; 1 Ostrovityanova str., Moscow, 117997
Competing Interests: Not declared
M. A. Shabanov
Russian Federation
24 Kashirskoye Highway, Moscow, 115478
Competing Interests: Not declared
O. A. Kravets
Russian Federation
24 Kashirskoye Highway, Moscow, 115478
Competing Interests: Not declared
F. O. Zakhidova
Russian Federation
24 Kashirskoye Highway, Moscow, 115478
Competing Interests: Not declared
S. M. Ivanov
Russian Federation
24 Kashirskoye Highway, Moscow, 115478
Competing Interests: Not declared
D. I. Fedoseenko
Russian Federation
24 Kashirskoye Highway, Moscow, 115478
Competing Interests: Not declared
A. V. Egorova
Russian Federation
1 Ostrovityanova str., Moscow, 117997
Competing Interests: Not declared
S. V. Chulkova
Russian Federation
24 Kashirskoye Highway, Moscow, 115478; 1 Ostrovityanova str., Moscow, 117997
Competing Interests: Not declared
References
1. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526-42. DOI: 10.1038/nrd4003.
2. Furst CJ. Radiotherapy for cancer. Quality of life. Acta Oncol. 1996;35(Suppl. S7):141-8. DOI: 10.3109/02841869609101675.
3. Berkey FJ. Managing the adverse effects of radiation therapy. Am Fam Phys. 2010;82:381-8, 394.
4. Massie MJ. Prevalence of depression in patients with cancer. J Natl Cancer Inst Monogr. 2004:5771. DOI: 10.1093/jncimonographs/lgh014.
5. Jereczek-Fossa BA, Marsiglia HR, Orecchia R. Radiotherapy-related fatigue. Crit Rev Oncol Hematol. 2002;41:317-25. DOI: 10.1016/S1040-8428(01)00143-3.
6. Adams MJ, Lipshultz SE, Schwartz C, et al. Radiation-associated cardiovascular disease: Manifestations and management. Semin Radiat Oncol. 2003;13:346-56. DOI: 10.1016/S1053-4296(03)00026-2.
7. Marks LB, Carroll PR, Dugan TC, et al. The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys. 1995;31:1257-80. DOI: 10.1016/0360-3016(94)00431-J.
8. Bardychev MS, Tsyb AF. Local Radiation Damage. Moscow. 1985. 240 p. (In Russ.).
9. Prise KM, Schettino G, Folkard M, et al. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520-8. DOI: 10.1016/S1470-2045(05)70246-1.
10. Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32:103-15. DOI: 10.3857/roj.2014.32.3.103.
11. Martin M, Lefaix JL, Delanian S. TGF-^1 and radiation fibrosis: A master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47:277-90. DOI: 10.1016/S0360-3016(00)00435-1.
12. Bentzen SM, Constine LS, Deasy JO, et al. Quantitative analysis of normal tissue effects in the clinic (QUANTEC). Review on the tolerance of normal tissue to therapeutic radiation. Int J Radiat Oncol Biol Phys. 2010;76(3):1-120. DOI: 10.1093/jicru/ndq001.
13. Giuranno L, lent J, De Ruysscher D, et al. Radiation-Induced Lung Injury (RILI) Frontiers in Oncology. 2019;9:877.
14. Williams JP, Johnston CJ, Finkelstein JN. Treatment for Radiation-Induced Pulmonary Late Effects: Spoiled for Choice or Looking in the Wrong Direction? Curr Drug Targets. 2010;11(11):1386-94.
15. Dehing-Oberije C, De Ruysscher D, van Baardwijk V, et al. The importance of patient characteristics for the prediction of radiation-induced lung toxicity. Lung Cancer RT Morbidity. 2009;91(3):421-6. DOI: 10.1016/j.radonc.2008.12.0024.
16. Hanania AN, Mainwaring W, Ghebre YT, et al. Radiation-Induced Lung Injury: Assessment and Management. Chest. 2019;156(1):150-62.
17. Giridhar P, Mallick S, Rath GK, et al. Radiation induced lung injury: prediction, assessment and management. Asian Pac J Cancer Prev. 2015;16(7):2613-7.
18. Vijay K, Singh Thomas M. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 2020;21(3):317-37. DOI: 10.1080/14656566.2019.1702968.
19. Dygay AM, Skurikhin EG, Krupin VA. Pulmonary Fibrosis and Stem Cells: New Treatment Approaches. Moscow: Publishing House of the RAS. 2018. 200 p. (In Russ.).
20. Nicolaou N. Prevention and management of radiation toxicity. Oncology J. 2005:3-7.
21. Williams JP, Johnston CJ, Finkelstein JN. Treatment for Radiation-Induced Pulmonary Late Effects: Spoiled for Choice or Looking in the Wrong Direction? Curr Drug Targets. 2010;11(11):1386-94.
22. Chen Z, Wu Z, Ning W. Advances in Molecular Mechanisms and Treatment of Radiation-Induced Pulmonary Fibrosis. Transl Oncol. 2019;12(1):162-9. DOI: 10.1016/j.tranon.2018.09.009.
Review
For citations:
Gladilina I.A., Shabanov M.A., Kravets O.A., Zakhidova F.O., Ivanov S.M., Fedoseenko D.I., Egorova A.V., Chulkova S.V. Radiation-Induced Lung Injury. Journal of oncology: diagnostic radiology and radiotherapy. 2020;3(2):9-18. (In Russ.) https://doi.org/10.37174/2587-7593-2020-3-2-9-18