Preview

Journal of oncology: diagnostic radiology and radiotherapy

Advanced search

18F-FET PET/CT in Non-Enhancing Brain Tumor (Case Report)

https://doi.org/10.37174/2587-7593-2019-2-3-95-100

Abstract

The method of positron emission tomography combined with computed tomography (PET/CT) makes it possible to evaluate not only anatomical and structural, but also metabolic changes in tumor. PET/CT with 18F-fluoroethylthyrosine (18F-FET) is based on the evaluation of 18F labeled tyrosine amino acid transport from the bloodstream into the tumor tissue.

Clinical case of a patient with the brain tumor newly diagnosed by MRI presents 18F-FET PET/CT findings in it. This clinical case demonstrates the possibilities of 18F-FET PET/CT in assessment of true volume and degree of anaplasia of brain neoplasm, which influenced to treatment tactics.

About the Authors

A. I. Pronin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Moscow



M. B. Dolgushin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Moscow



N. A. Meshcheriakova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Moscow



A. I. Mikhaylov
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Moscow



References

1. Bondy M.L. et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium // Cancer. 2008. Vol. 113. № S7. P. 1953-1968. DOI: 10.1002/ cncr.23741.

2. Абсалямова О.В., Алешин В.А., Аникеева О.Ю. и соавт. Клинические рекомендации по диагностике и лечению больных с первичными опухолями головного мозга. - М. 2014. С. 8-10. DOI: 10.14341/ket2007346-8.

3. Weise G., Stoll G. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant? // Frontiers in Neurology. 2012. Vol. 3. DOI: 10.3389/fneur.2012.00178.

4. Jain R. et al. Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade // Amer. J. Neuroradiol. 2008. Vol. 29. № 4. P. 694-700. DOI: 10.3174/ajnr.a0899.

5. Долгушин М.Б., Пронин И.Н., Фадеева Л.М. и соавт. Импульсная последовательность SWAN (3,0 Тл МРТ) и КТ перфузия в комплексной оценке структурных особенностей метастазов в головном мозге и злокачественных глиом // Лучевая диагностика и терапия. 2012. № 3 С. 41-50.

6. Сергеев П.В., Поляев Ю.А., Юдин А.Л., Шимановский Н.Л. Контрастные средства. - М.: Известия. 2007. 496 с.

7. la Fougere C. et al. Molecular imaging of gliomas with PET: opportunities and limitations // Neurooncology. 2011. Vol. 13. № 8. P 806-819. DOI: 10.1093/neuonc/nor054.

8. Pauleit D. et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors // Nucl. Med. Biol. 2009. Vol. 36. № 7. P 779-787. DOI: 10.1016/j.nucmedbio.2009.05.005.

9. Galldiks N. et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F] Fluoroethyl-L-tyrosine PET in comparison to MRI // Eur. J. Nucl. Med. Mol. Imaging. 2013. Vol. 40. № 1. С. 22-33. DOI: 10.1007/s00259-012-2251-4.

10. Hara T. et al. PET imaging of brain tumor with (methyl-11C) choline // J. Nucl. Med. 1997. Vol. 38. № 6. P 842845.

11. Langen K.J. et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas // Nucl. Med. Biol. 2003. Vol. 30. № 5. P 501-508. DOI: 10.1016/s0969-8051(03)00023-4.

12. Kwee S.A. et al. Solitary brain lesions enhancing at MR Imaging: evaluation with fluorine 18-Fluorocholine PET // Radiology. 2007. Vol. 244. № 2. P. 557-565. DOI: 10.1148/radiol.2442060898.

13. Wyss M.T. et al. Uptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP (L19), a marker of angiogenesis // J. Nucl. Med. 2007. Vol. 48. № 4. P 608-614. DOI: 10.2967/jnumed.106.036251.

14. Langen K.J. et al. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications // Nucl. Med. Biol. 2006. Vol. 33. № 3. P. 287-294. DOI: 10.1016/j.nucmedbio.2006.01.002.

15. Weckesser M. et al. Evaluation of the extension of cerebral gliomas by scintigraphy // Strahlentherapie und Onkologie. 2000. Vol. 176. № 4. P. 180-185. DOI: 10.1007/s000660050054.

16. Stober B. et al. Differentiation of tumor and inflammation: characterisation of [methyl-3H] methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumor and inflammatory cells // Eur. J. Nucl. Med. Mol. Imaging. 2006. Vol. 33. № 8. P. 932-939. DOI: 10.1007/s00259-005-0047-5.

17. del Amo E. M., Urtti A., Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2 // Eur. J. Pharm. Sci. 2008. Vol. 35. № 3. P 161-174. DOI: 10.1016/j.ejps.2008.06.015.

18. Jansen N. L. et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients // J. Nucl. Med. 2014. Vol. 55. № 2. P 198203. DOI: 10.2967/jnumed.113.122333.

19. Popperl G. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? // J. Nucl. Med. 2006. Vol. 47. № 3. P. 393-403.

20. Popperl G. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading // Eur. J. Nucl. Med. Mol. Imaging. 2007. Vol. 34. № 12. P 1933-1942. DOI: 10.1007/s00259-007-0534-y.

21. Jansen N.L. et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? // Eur. J. Nucl. Med. Mol. Imaging. . 2012. Vol. 39. № 6. P 10211029. DOI: 10.1007/s00259-012-2109-9.


Review

For citations:


Pronin A.I., Dolgushin M.B., Meshcheriakova N.A., Mikhaylov A.I. 18F-FET PET/CT in Non-Enhancing Brain Tumor (Case Report). Journal of oncology: diagnostic radiology and radiotherapy. 2019;2(3):95-100. (In Russ.) https://doi.org/10.37174/2587-7593-2019-2-3-95-100

Views: 1132


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7593 (Print)
ISSN 2713-167X (Online)