Boron Neutron Capture Therapy: Physical Aspects
https://doi.org/10.37174/2587-7593-2024-7-4-19-27
Abstract
The basics of Boron Neutron Capture Therapy (BNCT) of malignant tumors and requirements for a therapeutic neutron beam are presented, neutron sources used or being developed for BNCT are listed, and features of dosimetry and treatment planning system are indicated.
Keywords
About the Authors
M. I. BikchurinaRussian Federation
11, Lavrentiev ave., Novosibirsk, 630090, Russia
2, Pirogov str., Novosibirsk, 630090, Russia
Competing Interests:
Conflict of interests. Not declared
D. A. Kasatov
Russian Federation
11, Lavrentiev ave., Novosibirsk, 630090, Russia
2, Pirogov str., Novosibirsk, 630090, Russia
Competing Interests:
Conflict of interests. Not declared
I. A. Kolesnikov
Russian Federation
11, Lavrentiev ave., Novosibirsk, 630090, Russia
2, Pirogov str., Novosibirsk, 630090, Russia
Competing Interests:
Conflict of interests. Not declared
E. O. Sokolova
Russian Federation
11, Lavrentiev ave., Novosibirsk, 630090, Russia
2, Pirogov str., Novosibirsk, 630090, Russia
Competing Interests:
Conflict of interests. Not declared
I. S. Taskaeva
Russian Federation
11, Lavrentiev ave., Novosibirsk, 630090, Russia
2, Pirogov str., Novosibirsk, 630090, Russia
6, Arbuzova str., Novosibirsk, 630117, Russia
Competing Interests:
Conflict of interests. Not declared
S. Yu. Taskaev
Russian Federation
Sergey Yu. Taskaev
+7 923 128 3601
11, Lavrentiev ave., Novosibirsk, 630090, Russia
2, Pirogov str., Novosibirsk, 630090, Russia
Competing Interests:
Conflict of interests. Not declared
References
1. Neutron Capture Therapy. Principles and Applications / Ed. by: W. Sauerwein, A. Wiƫg, R. Moss, Y. Nakagawa. — Springer. 2012. — 553 p.
2. Taskaev S, Kanygin V. Boron neutron capture therapy / Novosibirsk. 2016. — 216 p. (In Russ.).
3. Dymova M, Taskaev S, Richter V, Kuligina E. Boron neutron capture therapy: current status and future perspectives. Cancer Communications. 2020;40:406-21. https://doi.org/0.1002/cac2.12089.
4. Ahmed M, Alberti D, Altieri S, et al. Advances in Boron Neutron Capture Therapy. International Atomic Energy Agency, Vienna, Austria. 2023. 416 p.
5. Taskaeva I, Kasatova A, Surodin D, Bgatova N, Taskaev S. Study of Lithium Biodistribution and Nephrotoxicity in Skin Melanoma Mice Model: The First Step towards Implementing of Lithium Neutron Capture Therapy. Life. 2013;13:518. https://doi.org/10.3390/life13020518.
6. Makarov AN, Taskaev SYu. Beam of Monoenergetic Neutrons for the Calibration of a Dark-Matter Detector. JETP Letters. 2013;97(12):667-9. (In Russ.). https://doi.org/10.1134/S0021364013120072.
7. Vendera A, Praena J. Study on novel neutron irradiation without beam shaping assembly in Boron Neutron Capture Therapy. Sci Rep. 2024;14:22434. https://doi.org/10.1038/s41598-024-73458-w.
8. Lacoste V. Review of radiation sources, calibration facilities and simulated workplace fields. Radiat Measur. 2010;45:1083-89. https://doi.org/10.1016/j.radmeas.2010.05.036.
9. Lee CL, Zhou y-L. Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold. Nucl Instrum Meth Phys Res B. 1999;152(1):1-11. https://doi.org/10.1016/S0168-583y(99)00026-9.
10. Taskaev S, Berendeev E, Bikchurina M, et al. Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target. Biology. 2021;10:350. https://doi.org/10.3390/biology10050350.
11. Taskaev S. Accelerator based neutron source VITA. M.: FIZMATLIT. 2024. — 248 p. (In Russ.).
12. Zaboronok A, Byvaltsev V, Kanygin V, et al. Boron-neutron capture therapy in Russia: preclinical evaluation of efficacy and perspectives of its application in neurooncology. New Armenian Medical Journal. 2017;11(1):6-15.
13. Sato E, Zaboronok A, Yamamoto T, et al. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy. J Radiat Res. 2018;59(2):101-7. https://doi.org/10.1093/jrr/rrx071.
14. Kanygin V, Kasatova A, Razumov I, et al. Assessment of the effect of boron neutron capture therapy on tumor cell lines and primary embryonic cell culture. Siberian Journal of Oncology. 2021;20(3):56-66. (In Russ.). https://doi.org/10.21294/1814-4861-2021-20-3-56-66.
15. Kanygin V, Kasatova A, Zavjalov E, et al. Effects of boron neutron capture therapy on the growth of subcutaneous xenografts of human colorectal adenocarcinoma SW-620 in immunodeficient mice. Bulletin of Experimental Biology and Medicine. 2021;172(9):356-61. (In Russ.). https://doi.org/10.1007/s10517-022-05392-8.
16. Kanygin V, Kichigin A, Zaboronok A, et al. in vivo Accelerator-based Boron Neutron Capture Therapy for Spontaneous Tumors in Large Animals: Case Series. Biology. 2022;11:138. https://doi.org/10.3390/biology11010138.
17. Kanygin V, Zaboronok A, Kichigin A, et al. Gadolinium neutron capture therapy for cats and dogs with spontaneous tumors using Gd-DTPA. Veterinary Sciences. 2023;10:274. https://doi.org/10.3390/vetsci10040274.
18. Dymova M, Dmitrieva M, Kuligina E, et al. Method of measuring high-LET particles dose. Radiat Res. 2021;196:192-6. https://doi.org/10.1667/RADE-21-00015.1.
19. Bykov T, Kasatov D, Koshkarev A, et al. Initial trials of a dose monitoring detector for boron neutron capture therapy. J Instrum. 2021;16:P01024. https://doi.org/10.1088/1748-0221/16/01/P01024.
20. Bykov T, Kasatov D, Koshkarev A, et al. Evaluation of depthdose profiles in a water phantom at the BNCT facility at BINP. J Instrum. 2021;16:P10016. https://doi.org/10.1088/1748-0221/16/10/P10016.
21. Byambatseren E, Burdakov A, Bykov T, et al. Validation and optimization of the epithermal neutron Ňux detector using the 71Ga(n,ɶ)72Ga reaction. J Instrum. 2023;18:P02020. https://doi.org/10.1088/1748-0221/18/02/P02020.
22. Sycheva T, Berendeev E, Verkhovod G, Taskaev S. A single coned Poly-Biz moderator designed for animal irradiation in boron neutron capture therapy. Appl Radiat Isotopes. 2023;198:110818. https://doi.org/10.1016/j.apradiso.2023.110818.
23. Bikchurina M, Bykov T, Ibrahim I, et al. Dosimetry for Boron Neutron Capture Therapy Developed and Verified at the Accelerator based Neutron Source VITA. Frontiers in Nuclear Engineering. 2023;2:1266562. https://doi.org/10.3389/fnuen.2023.1266562.
24. Uspenskii S, Khaptakhanova P, Zaboronok A, et al. Elemental Boron Nanoparticles: Production by Ultrasonication in Aqueous Medium and Application in Boron Neutron Capture Therapy. Doklady Chemistry. 2020;491(1);45-8. (In Russ.). https://doi.org/10.1134/S0012500820030027.
25. Zavjalov E, Zaboronok A, Kanygin V, et al. Accelerator-based boron neutron capture therapy for malignant glioma: a pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice. Int J Radiat Biol. 2020;96(7):868-78. https://doi.org/10.1080/09553002.2020.1761039.
26. Vorobyeva M, Dymova M, Novopashina D, et al. Tumor Cell-Specific 2’-Fluoro RNA Aptamer Conjugated with Closo-Dodecaborate as a Potential Agent for Boron Neutron Capture Therapy. Int J Molec Sci. 2021;22:7326. https://doi.org/10.3390/ijms22147326.
27. Zaboronok A, Taskaev S, Volkova O, et al. Gold Nanoparticles Permit in Situ Absorbed Dose Evaluation in Boron Neutron Capture Therapy for Malignant Tumors. Pharmaceutics. 2021;13:1490. https://doi.org/10.3390/pharmaceutics13091490.
28. Popova T, Dymova M, Koroleva L, et al. Homocystamide conjugates of human serum albumin as a plaƞorm to prepare bimodal multidrug delivery systems for boron-neutron capture therapy. Molecules. 2021;26:6537. https://doi.org/37.10.3390/molecules26216537.
29. Kanygin V, Razumov I, Zaboronok A, et al. Dose-dependent suppression of human glioblastoma xenograft growth by accelerator-based boron neutron capture therapy with simultaneous use of two boron-containing compounds. Biology. 2021;10:1124. https://doi.org/10.3390/biology10111124.
30. Zaboronok A, Khaptakhanova P, Uspenskii S, et al. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics. 2022;14:761. https://doi.org/10.3390/pharmaceutics14040761.
31. Aiyyzhy K, Barmina E, Zavestovskaya I, et al. Laser ablation of F e2B target enriched in 10B content for boron neutron capture therapy. Laser Physics Letters. 2022;19:066002. https://doi.org/10.1088/1612-202y/ac642c.
32. Novopashina D, Dymova M, Davydova A, et al. Optamers for addressed boron delivery in BNCT: Effect of boron cluster attachment site on functional activity. Int J Molec Sci. 2023;24:306. https://doi.org/10.3390/ijms24010306.
33. Raskolupova V, Wang M, Dymova M, et al. Design of the new closo-dodecarborate-containing gemcitabine analogue for the albumin-based theranostics composition. Molecules. 2023;28:2672. https://doi.org/10.3390/molecules28062672.
34. Potseleev V, Uspenskii S, Trofimchuk E, et al. Nanocomposite Materials Based on Polylactide and Gold Com-2 plex Compounds for Absorbed Dose Diagnostics in BNCT. Int J Molec Sci. 24 (2023) 16492. https://doi.org/10.3390/ijms242216492.
35. Zavestovskaya I, Kasatova A, Kasatov D, et al. Laser-synthesized elemental boron nanoparticles for efficient boron neutron capture therapy. Int J Molec Sci. 2024;24:17088. https://doi.org/10.3390/ijms242317088
36. Taskaeva Yu, Kasatova A, Shatruk A, Taskaev S, Bgatova N. The Expression of Markers of Acute Kidney Injury Kim1 and NGAL after Administration of High Doses of Lithium Carbonate in Mice with Engrafted Skin Melanoma B16. Bulletin of Experimental Biology and Medicine. 2024;176(5):579-84. (In Russ.). https://doi.org/10.1007/s10517-024-06068-1.
37. Taskaeva I, Kasatova A, Razumov I, et al. Lithium salts cytotoxicity and accumulation in melanoma cells in vitro. J Appl Toxicol. 2024;44(5):712-9. https://doi.org/10.1002/jat.4576.
38. Kasatova AI, Razumov IA, Taskaev SYu, Taskaeva YuS. Comparative assessment of cytotoxicity and accumulation of boron and lithium preparations in skin melanoma cells in vitro. Bulletin of Experimental Biology and Medicine. 2024;177(6):717-22. (In Russ.). https://doi.org/10.47056/0365-9615-2024-177-6-717-722.
39. Shoshin A, Burdakov A, Ivantsivskiy M, et al. Test results of boron carbide ceramics for ITER port protection. Fusion Engineering and Design. 2021;168:112426. https://doi.org/10.1016/j.fusengdes.2021.112426.
40. Shoshin A, Burdakov A, Ivantsivskiy M, et al. Integration of ITER diagnostic ports at the Budker Institute. Fusion Engineering and Design. 2022;178:113114. https://doi.org/10.1016/j.fusengdes.2022.113114.
41. Abdrashitov G, Kapitonov V, Kolesnikov Ia, et al. Compact Accelerator-Based Fast Neutron Source for the Radiation Testing of Promising Materials. Physics of Particles and Nuclei Letters. 2024;21(3):346-51. https://doi.org/10.1134/S1547477124700249.
42. Taskaev S, Bykov T, Kasatov D, et al. Measurement of the 7Li(p,p’ɶ)7Li reaction cross-section and 478 keV photon yield from a thick lithium target at proton energies from 0.65 MeV to 2.225 MeV. Nucl Instrum Meth Phys Res B. 2021;502:85-94. https://doi.org/10.1016/j.nimb.2021.06.010.
43. Bikchurina M, Bykov T, Kasatov D, et al. The measurement of the neutron yield of the 7Li(p,n)7Be reaction in lithium targets. Biology. 2021;10:824. https://doi.org/10.3390/biology10090824.
44. Taskaev S, Bikchurina M, Bykov T, et al. Cross-section measurement for the 7Li(p,ɲ)4He reaction at proton energies 0.6 - 2 MeV. Nucl Instrum Meth Phys Res B. 2022;525:55-61. https://doi.org/10.1016/j.nimb.2022.06.010.
45. Taskaev S, Bessmeltsev V, Bikchurina M, et al. Measurement of cross-section of the 6Li(d,ɲ)4He, 6Li(d,p)7Li, 6Li(d,p)7Li* , 7Li(d,ɲ)5He, and 7Li(d,nɲ)4He reactions at the deuteron energies from 0.3 MeV to 2.2 MeV. Nucl Instrum Meth Phys Res B. 2024;554:165460. https://doi.org/10.1016/j.nimb.2024.165460.
46. Taskaev S, Bessmeltsev V, Bikchurina M, et al. Measurement of the 11B(p,ɲ0)8Be and the 11B(p,ɲ1)8Be* reactions cross-sections at the proton energies up to 2.2 MeV. Nucl Instrum Meth Phys Res B. 2024;555:165490. https://doi.org/10.1016/j.nimb.2024.165490.
47. Taskaev S, Bessmeltsev V, Bikchurina M, et al. Measurement of the 10B(d,ɲ0)8Be, 10B(d,ɲ1)8Be* , 10B(d,p2)9Be* , 11B(d,ɲ0)9Be, and 11B(d,ɲ2)9Be* reactions cross-sections at the deuteron energies up to 2.2 MeV. Nucl Instrum Meth Phys Res B. 2024;557:165527. https://doi.org/10.1016/j.nimb.2024.165527.
48. Badrutdinov A, Bykov T, Gromilov S, et al. /n ^itu Observations of Blistering of a Metal Irradiated with 2-MeV Protons. Metals. 2017;7(12);558. https://doi.org/10.3390/met7120558.
49. Kasatov D, Koshkarev A, Makarov A, et al. A fast-neutron source based on a vacuum-insulated tandem accelerator and a lithium target. Instruments and Experimental Techniques. 2020;63(5):611–5. (In Russ.). https://doi.org/10.1134/S0020441220050152.
50. Kasatov D, Kolesnikov Ia, Koshkarev A, et al. Method for in situ measuring the thickness of a lithium layer. Journal of Instrumentation. 2020;15:P10006. https://doi.org/10.1088/1748-0221/15/10/P10006.
51. Bykov T, Goloshevskii N, Gromilov S, et al. /n situ study of the blistering effect of copper with a thin lithium layer on the neutron yield in the 7Li(p,n)7Be reaction. Nucl Instrum Meth Phys Res B. 2020;481:62-81. https://doi.org/10.1016/j.nimb.2020.08.010.
52. Svishcheva N, Uspenskii S, Sedush N, et al. Biodegradable boron-containing poly(lactic acid) for fertilizers with prolonged action. Materials Today Communications 33 (2022) 104514. https://doi.org/10.1016/j.mtcomm.2022.104514.
53. Romashchenko A, Petrovskii D, Trotsky S, et al. Yuantitative tracking of trans-synaptic nose-to-brain transport of nanoparticles and its modulation by odor, aging, and Parkinson’s disease. Nano Res. 2023;16(5):7119-33. https://doi.org/10.1007/s12274-022-5302-6.
54. Dyusenova S, Klyamer D, Sukhikh A, et al. InŇuence of Magnetic Field on the Structure and Sensor Properties of Thin Titanyl Phthalocyanine Layers. J Struct Chem. 2023;64(3):337-46. https://doi.org/10.1134/S0022476623030010.
55. Kasatov DA. Study of materials of neutron-generating target for boron neutron capture therapy. Author’s abstract of thesis PhD. Novosibirsk. 2022. 143 p. (In Russ.).
56. Sokolova EO. Research and optimization of a thin lithium target for neutron generation. Author’s abstract of thesis PhD. Novosibirsk. 2022. 127 p. (In Russ.).
57. Bikchurina MI. Study of generating properties of a lithium target. Author’s abstract of thesis PhD. Novosibirsk. 2024. 138 p. (In Russ.).
58. Zaidi L, Kashaeva E, Lezhnin S, et al. Neutron-Beam-Shaping Assembly for Boron Neutron-Capture Therapy. Physics of Atomic Nuclei. 2017;80(1):60-6. https://doi.org/10.1134/S106377881701015y.
59. Zaidi L, Belgaid M, Taskaev S, Khelifi R. Beam Shaping Assembly Design of 7Li(p,n)7Be Neutron Source for Boron Neutron Capture Therapy of Deep-seated Tumor. Appl Radiat Isotop. 2018;139:316-24. https://doi.org/10.1016/j.apradiso.2018.05.029.
60. https://www.conicet.gov.ar/new_scp/detalle.php?key‑wordsс=&id=20599&congresos=yes&detalles=yes&congr_id=10189175
61. Kobayashi T, Kanda K. Microanalysis system of ppm order B-10 concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl Instrum Meth Phys Res 1983;204:525-31. https://doi.org/10.1016/0167-5087(83)90082-0.
62. Green S, Phoenix B, Nakamura S, et al. Accelerator neutron sources for BNCT: current status and some pointers for future development. Appl Radiat Isotop. 2025 (under review).
Review
For citations:
Bikchurina M.I., Kasatov D.A., Kolesnikov I.A., Sokolova E.O., Taskaeva I.S., Taskaev S.Yu. Boron Neutron Capture Therapy: Physical Aspects. Journal of oncology: diagnostic radiology and radiotherapy. 2024;7(4):19‑27. (In Russ.) https://doi.org/10.37174/2587-7593-2024-7-4-19-27