Modern Methods of Imaging of Breast Neoplasms (Literature Review)
https://doi.org/10.37174/2587-7593-2023-6-3-41-48
Abstract
High incidence of breast cancer is unchanged; therefore, it is relevant to study the possibilities of modern radiological methods for the diagnostics of breast cancer at an early stage. The purpose of the study was to analyze current trends of breast cancer diagnostics at early stages by modern imaging methods according to the literature. The systematic search was performed for reviews and meta-analyses in RSCI, PubMed, Scopus, Web of Science databases, published from 2012 to 2022, on breast cancer diagnostics using the keywords: breast cancer, mammography, digital breast tomosynthesis, Contrast-Enhanced Spectral Mammography, positron emission computed tomography, computed tomography, single photon emission computed tomography, ultrasound, ultrasound tomosynthesis, magnetic resonance imaging. Out of 100 publications published over the past 10 years, 48 were included in the presented review. The existing methods of diagnosing breast cancer have certain advantages and disadvantages relative to each other, the consideration of which is necessary when drawing up a plan of clarifying diagnostic measures, including women with high breast density. Promising methods of diagnosing breast cancer at an early stage — digital tomosynthesis, ultrasound tomosynthesis, dual-energy spectral contrast mammography, short MRI protocol are new and could be optimize the approach to the diagnosis of breast lesions in women with high breast density. This poorly studied methods require further research to optimize the breast cancer-screening algorithm, improve the indicators of early detection of breast cancer and increase economic efficiency.
About the Authors
A. E. GaraninaRussian Federation
41, Kirochnaya str., St. Petersburg, 191015; 22, letter A, Moskovsky prosp., St. Petersburg, 190013
A. V. Kholin
Russian Federation
41, Kirochnaya str., St. Petersburg, 191015
References
1. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi:10.1259/bjr.20211033
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
3. Sharma R. Global, regional, national burden of breast cancer in 185 countries: evidence from GLOBOCAN 2018. Breast Cancer Res Treat. 2021;187(2):557-567. doi:10.1007/s10549-020-06083-6
4. Łukasiewicz S, Czeczelewski M, Forma A, et al. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel). 2021;13(17):4287. Published 2021 Aug 25. doi:10.3390/cancers13174287
5. Sharma R. Breast cancer incidence, mortality and mortality-to-incidence ratio (MIR) are associated with human development, 1990-2016: evidence from Global Burden of Disease Study 2016. Breast Cancer. 2019;26(4):428-445. doi:10.1007/s12282-018-00941-4
6. DeSantis CE, Ma J, Jemal A. Trends in stage at diagnosis for young breast cancer patients in the United States. Breast Cancer Res Treat. 2019;173(3):743-747. doi:10.1007/s10549-018-5042-1
7. Duffy SW, Vulkan D, Cuckle H, et al. Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial. Lancet Oncol. 2020;21(9):1165-1172. doi:10.1016/S1470-2045(20)30398-3
8. Shawky M, Ali ZAE, Hashem DH, et al. Role of positron-emission tomography/computed tomography (PET/CT) in breast cancer. Egyptian Journal of Radiology and Nuclear Medicine. 2020;51(1): 125. doi: 10.1186/s43055-020-00244-9
9. Malmartel A, Tron A, Caulliez S. Accuracy of clinical breast examination's abnormalities for breast cancer screening: cross-sectional study. Eur J Obstet Gynecol Reprod Biol. 2019;237:1-6. doi:10.1016/j.ejogrb.2019.04.003
10. Barazi H, Gunduru M. Mammography BI RADS Grading. [Updated 2022 Aug 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539816/
11. Ciritsis A, Rossi C, Eberhard M, et al. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Eur Radiol. 2019;29(10):5458-5468. doi:10.1007/s00330-019-06118-7
12. Gastounioti A, McCarthy AM, Pantalone L, et al. Effect of Mammographic Screening Modality on Breast Density Assessment: Digital Mammography versus Digital Breast Tomosynthesis. Radiology. 2019;291(2):320-327. doi:10.1148/radiol.2019181740
13. Gooch JC, Yoon E, Chun J, et al. The Relationship of Breast Density and Positive Lumpectomy Margins. Ann Surg Oncol. 2019;26(6):1729-1736. doi:10.1245/s10434-019-07295-x
14. Covington MF, Pizzitola VJ, Lorans R, et al. The Future of Contrast-Enhanced Mammography. AJR Am J Roentgenol. 2018;210(2):292-300. doi:10.2214/AJR.17.18749
15. Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer. 2018;25(3):259-267. doi:10.1007/s12282-018-0857-5
16. Scott AM, Lashley MG, Drury NB, et al. Comparison of Call-Back Rates between Digital Mammography and Digital Breast Tomosynthesis. Am Surg. 2019;85(8):855-857.
17. Giampietro RR, Cabral MVG, Lima SAM, et al. Accuracy and Effectiveness of Mammography versus Mammography and Tomosynthesis for Population-Based Breast Cancer Screening: A Systematic Review and Meta-Analysis. Sci Rep. 2020;10(1):7991. Published 2020 May 14. doi:10.1038/s41598-020-64802-x
18. Grinberg MV, Harchenko NV, Rozhkova NI, et al. The first experience of tomosynthesis in diagnostic of Nonpalpable breast cancer. Modern problems of science and education. 2015 (in Russian].
19. Boyd NF. Mammographic density and risk of breast cancer. Am Soc Clin Oncol Educ Book. 2013;10.1200/EdBook_AM.2013.33.e57. doi:10.14694/EdBook_AM.2013.33.e57
20. Lee CI, Bassett LW, Lehman CD. Breast density legislation and opportunities for patient-centered outcomes research. Radiology. 2012;264(3):632-636. doi:10.1148/radiol.12120184
21. Strand F, Azavedo E, Hellgren R, et al. Localized mammographic density is associated with interval cancer and large breast cancer: a nested case-control study. Breast Cancer Res. 2019;21(1):8. Published 2019 Jan 22. doi:10.1186/s13058-019-1099-y
22. Skarping I, Förnvik D, Sartor H, et al. Mammographic density is a potential predictive marker of pathological response after neoadjuvant chemotherapy in breast cancer. BMC Cancer. 2019;19(1):1272. Published 2019 Dec 30. doi:10.1186/s12885-019-6485-4
23. Huang YS, Chen JL, Huang CS, et al. High mammographic breast density predicts locoregional recurrence after modified radical mastectomy for invasive breast cancer: a case-control study. Breast Cancer Res. 2016;18(1):120. Published 2016 Dec 1. doi:10.1186/s13058-016-0784-3
24. Berg WA, Rafferty EA, Friedewald SM, et al. Screening Algorithms in Dense Breasts: AJR Expert Panel Narrative Review. AJR Am J Roentgenol. 2021;216(2):275-294. doi:10.2214/AJR.20.24436
25. Posso M, Louro J, Sánchez M, et al. Mammographic breast density: How it affects performance indicators in screening programmes?. Eur J Radiol. 2019;110:81-87. doi:10.1016/j.ejrad.2018.11.012
26. Chong A, Weinstein SP, McDonald ES, et al. Digital Breast Tomosynthesis: Concepts and Clinical Practice. Radiology. 2019;292(1):1-14. doi:10.1148/radiol.2019180760
27. Conti A, Duggento A, Indovina I, et al. Radiomics in breast cancer classification and prediction. Semin Cancer Biol. 2021;72:238-250. doi:10.1016/j.semcancer.2020.04.002
28. Arleo EK, Dashevsky BZ, Reichman M, et al. Screening mammography for women in their 40s: a retrospective study of the potential impact of the U.S. Preventive Service Task Force's 2009 breast cancer screening recommendations. AJR Am J Roentgenol. 2013;201(6):1401-1406. doi:10.2214/AJR.12.10390
29. Covington MF, Pizzitola VJ, Lorans R, et al. The Future of Contrast-Enhanced Mammography. AJR Am J Roentgenol. 2018;210(2):292-300. doi:10.2214/AJR.17.18749
30. Zielonke N, Kregting LM, Heijnsdijk EAM, et al. The potential of breast cancer screening in Europe. Int J Cancer. 2021;148(2):406-418. doi:10.1002/ijc.33204
31. Wang B, He M, Wang L, et al. Breast cancer screening among adult women in China, 2010. Prev Chronic Dis. 2013;10:E183. Published 2013 Nov 7. doi:10.5888/pcd10.130136
32. Chernaya AV, Ulyanova RH, Bagnenko SS, et al. Contrast spectral dual-energy mammography (CESM): a textbook for students in the system of higher and additional professional education. St. Petersburg: St. Petersburg: FSBI "NMIC of Oncology named after N.N. Petrov" of the Ministry of Health of Russia, 2020. 36 pages (in Russian)
33. Patel BK, Hilal T, Covington M, et al. Contrast-Enhanced Spectral Mammography is Comparable to MRI in the Assessment of Residual Breast Cancer Following Neoadjuvant Systemic Therapy. Ann Surg Oncol. 2018;25(5):1350-1356. doi:10.1245/s10434-018-6413-x
34. Giampietro RR, Cabral MVG, Lima SAM, et al. Accuracy and Effectiveness of Mammography versus Mammography and Tomosynthesis for Population-Based Breast Cancer Screening: A Systematic Review and Meta-Analysis. Sci Rep. 2020;10(1):7991. Published 2020 May 14. doi:10.1038/s41598-020-64802-x
35. Machado P, Eisenbrey JR, Stanczak M, et al. Characterization of Breast Microcalcifications Using a New Ultrasound Image-Processing Technique. J Ultrasound Med. 2019;38(7):1733-1738. doi:10.1002/jum.14861
36. Machado P, Eisenbrey JR, Stanczak M, et al. Ultrasound Detection of Microcalcifications in Surgical Breast Specimens. Ultrasound Med Biol. 2018;44(6):1286-1290. doi:10.1016/j.ultrasmedbio.2018.02.009
37. Golatta M, Franz D, Harcos A, et al. Interobserver reliability of automated breast volume scanner (ABVS) interpretation and agreement of ABVS findings with hand held breast ultrasound (HHUS), mammography and pathology results. Eur J Radiol. 2013;82(8):e332-e336. doi:10.1016/j.ejrad.2013.03.005
38. Golatta M, Baggs C, Schweitzer-Martin M, et al. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography. Arch Gynecol Obstet. 2015;291(4):889-895. doi:10.1007/s00404-014-3509-9
39. Ali EA, Saeed F, Adel L Do automated breast ultrasound and tomosynthesis have an effective role in dense breast evaluation? Egyptian Journal of Radiology and Nuclear Medicine. 2021;52(1): 282. doi: 10.1186/s43055-021-00658-z
40. Chang JM, Cha JH, Park JS, et al. Automated breast ultrasound system (ABUS): reproducibility of mass localization, size measurement, and characterization on serial examinations. Acta Radiol. 2015;56(10):1163-1170. doi:10.1177/0284185114551565
41. Schmachtenberg C, Fischer T, Hamm B, et al. Diagnostic Performance of Automated Breast Volume Scanning (ABVS) Compared to Handheld Ultrasonography With Breast MRI as the Gold Standard. Acad Radiol. 2017;24(8):954-961. doi:10.1016/j.acra.2017.01.021
42. van Zelst JCM, Tan T, Clauser P, et al. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts. Eur Radiol. 2018;28(7):2996-3006. doi:10.1007/s00330-017-5280-3
43. Girometti R, Zanotel M, Londero V, et al. Comparison between automated breast volume scanner (ABVS) versus hand-held ultrasound as a second look procedure after magnetic resonance imaging. Eur Radiol. 2017;27(9):3767-3775. doi:10.1007/s00330-017-4749-4
44. Kuhl C, Weigel S, Schrading S, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol. 2010;28(9):1450-1457. doi:10.1200/JCO.2009.23.0839
45. Sardanelli F, Podo F, Santoro F, et al. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk italian 1 study): final results. Invest Radiol. 2011;46(2):94-105. doi:10.1097/RLI.0b013e3181f3fcdf
46. Pinker K, Moy L, Sutton EJ, et al. Diffusion-Weighted Imaging With Apparent Diffusion Coefficient Mapping for Breast Cancer Detection as a Stand-Alone Parameter: Comparison With Dynamic Contrast-Enhanced and Multiparametric Magnetic Resonance Imaging. Invest Radiol. 2018;53(10):587-595. doi:10.1097/RLI.0000000000000465
47. Arleo EK, Dashevsky BZ, Reichman M, et al. Screening mammography for women in their 40s: a retrospective study of the potential impact of the U.S. Preventive Service Task Force's 2009 breast cancer screening recommendations. AJR Am J Roentgenol. 2013;201(6):1401-1406. doi:10.2214/AJR.12.10390
48. Michell MJ Breast screening review—a radiologist’s perspective. Br J Radiol. 2012; 85(1015): 845–847. DOI: 10.1259/bjr/21332901
Review
For citations:
Garanina A.E., Kholin A.V. Modern Methods of Imaging of Breast Neoplasms (Literature Review). Journal of oncology: diagnostic radiology and radiotherapy. 2023;6(3):41-48. (In Russ.) https://doi.org/10.37174/2587-7593-2023-6-3-41-48