## ВОЗМОЖНОСТИ ПЭТ/КТ С <sup>18</sup>F-ПСМА-1007 В ДИАГНОСТИКЕ ТРИЖДЫ НЕГАТИВНОГО РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ: КЛИНИЧЕСКИЙ СЛУЧАЙ

# А.В. Парнас, А.А. Оджарова, А.И. Пронин, В.С. Ильяков, Н.А. Мещерякова, З.Х. Камолова, Д.И. Невзоров

Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России; Россия, 115478, Москва, Каширское шоссе, 24

Контакты: Парнас Александр Вадимович, alexandrparnas@gmail.com

### Реферат

Рак молочной железы (РМЖ) — одно из наиболее распространенных онкологических заболеваний и ведущая причина смерти от рака у женщин. Трижды негативный рак молочной железы (ТНРМЖ) — специфический подтип рака молочной железы, который не экспрессирует рецепторы эстрогена (ЭР), рецепторы прогестерона (РП) или рецепторы-2 эпидермального фактора роста человека (HER-2), имеет определенные клинические особенности, склонность к рецидивам и плохой прогноз. В различных исследованиях показано, что простат-специфический антиген (ПСА) не является строго специфичным для рака предстательной железы, и может продуцироваться иными опухолевыми патологиями. В рутинной практике ПЭТ/КТ при ТНРМЖ выполняется с  $^{18}$ F-ФДГ. Однако качестве метода выбора с высоким тераностическим потенциалом может использоваться ПЭТ/КТ с  $^{18}$ F-ПСМА-1007. Приведен клинический случай пациентки с ТНРМЖ, которой была проведена ПЭТ/КТ с  $^{18}$ F-ФДГ и  $^{18}$ F-ПСМА-1007.

**Ключевые слова:** трижды негативный рак молочной железы, ПЭТ/КТ, <sup>18</sup>F-ФДГ, <sup>18</sup>F-ПСМА-1007

**Для цитирования:** Парнас А.В., Оджарова А.А., Пронин А.И., Ильяков В.С., Мещерякова Н.А., Камолова З.Х., Невзоров Д.И. Возможности ПЭТ/КТ с  $^{18}$ F-ПСМА-1007 в диагностике трижды негативного рака молочной железы: клинический случай. Онкологический журнал: лучевая диагностика, лучевая терапия. 2021;4(4):88-92.

DOI: 10.37174/2587-7593-2021-4-4-88-92

## Введение

Согласно данным Международного агентства по исследованию рака (IARC) (GLOBOCAN 2020), РМЖ — одно из наиболее часто диагностируемых онкологических заболеваний в мире и ведущая причина смерти от рака у женщин [1]. По данным ВОЗ, РМЖ является самым распространенным раком в структуре общей онкологической заболеваемости в мире, составляя 13 % от всех злокачественных новообразований у населения России [1]. Эпидемиологические исследования показывают, что ТНРМЖ чаще всего встречается у молодых женщин в пременопаузе в возрасте до 40 лет, особенно у пациенток африканского и латиноамериканского происхождения, а также у носительниц герминальных мутаций, которые в общем, составляют примерно 15-20 % всех пациентов опухолями молочной железы [2].

Особенностью ТНРМЖ является высокий риск рецидивирования, обусловленный отсутствием целенаправленной терапии, внутри- и межопухолевой гетерогенностью, а также инициальной и приобретенной устойчивостью к терапии у данной группы пациентов [3]. Uría et al более 20 назад обнаружили, что простат-специфический антиген (ПСА) может продуцироваться не только простатическими клетками, а также опухолями молочной железы, реже опухолями легких, яичников и эндометрия [4]. ПСА также присутствует в аспирате

сосков у нелактирующих женщин, и его значения были повышены при биопсии у пациентов с опухолевым поражением молочной железы.

## Клинический случай

Пациентка Ш. 1984 г. рождения обратилась в НМИЦ онкологии им. Н.Н. Блохина Минздрава России в 2021 г. для консультации у профильных специалистов.

Анамнез заболевания: В 2017 г. самостоятельно выявила образование молочной железы. Проведена расширенная биопсия опухоли молочной железы, установлен диагноз: С50.4 Рак левой молочной железы  $T_2N_1M_0$ , тройной негативный фенотип. Состояние после радикальной мастэктомии слева с эндопротезированием, простой мастэктомии справа с одновременной реконструкцией.

Результаты иммуногистохимического исследования —  $\Theta P = 0$ ,  $P\Pi = 0$ , Her 2/neu = 0, ki67 = 10-12 %.

При обследовании в декабре 2019 г. выявлено прогрессирование — метастазы в легкие, лимфоузлы средостения. Проведено 10 курсов полихимотерапии доцетакселом и карбоплатином. Лечение завершено в августе 2020 г. В дальнейшем находилась под динамическим наблюдением. В марте 2021 г. появилась неврологическая симптоматика. При МРТ головного мозга от 16.04.2021 — множественные метастазы (не менее 5 очагов). В апреле 2021 г. выполнено радиохирургическое облучение мета-

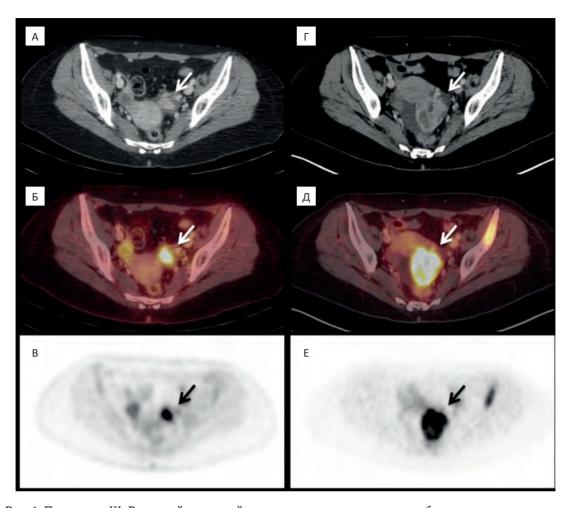



Рис. 1. Пациентка Ш. Рак левой молочной железы — состояние после комбинированного лечения. Прогрессирование: поражение костей, лимфоузлов и левого яичника. КТ изображения при ПЭТ/КТ с <sup>18</sup>F-ФДГ (A), <sup>18</sup>F-ПСМА-1007 (Г), комбинированные ПЭТ/КТ изображения с <sup>18</sup>F-ФДГ (B), <sup>18</sup>F-ПСМА-1007 (Д), МІР (проекция максимальной интенсивности) изображение ПЭТ с <sup>18</sup>F-ФДГ (B), <sup>18</sup>F-ПСМА-1007 (Е). Отмечается гиперфиксация обоих РФП в образовании левого яичника, отрицательная КТ динамика

Fig. 1. Patient S. Left breast cancer — condition after combined treatment. Progression: damage to bones, lymph nodes and left ovary. CT images with PET/CT with <sup>18</sup>F-FDG (A), <sup>18</sup>F-PSMA-1007 (Γ), combined PET/CT images with <sup>18</sup>F-FDG (B), <sup>18</sup>F-PSMA-1007 (Д), MIP (maximum intensity projection) PET image with <sup>18</sup>F-FDG (B), <sup>18</sup>F-PSMA-1007 (E). There is hyperfixation of both RPs in the formation of the left ovary, negative CT dynamics

стазов в головном мозге и микрохирургическое удаление метастаза правой гемисферы мозжечка.

Для определения активности и распространенности опухолевого процесса была выполнена ПЭТ/КТ с  $^{18}$ F-ФДГ, после этого пациентка обратилась в НМИЦ онкологии им. Н.Н. Блохина для консультации, лечения не получала. Через 1,5 мес после ПЭТ/КТ с  $^{18}$ F-ФДГ, в рамках научного исследования, было выполнено исследование ПЭТ/КТ с  $^{18}$ F-ПСМА-1007.

При ПЭТ/КТ с  $^{18}$ F-ФДГ определяются очаги патологического накопления: в единичных над- и подключичных лимфоузлах справа до SUV $_{\rm max}$  = 9,26 с размером до 18 мм, в конгломерате пекторальных лимфоузлов справа с SUV $_{\rm max}$  = 14,16 с размерами до 27×24 мм, в единичных паравазальных лимфоузлах справа в верхнем средостении до SUV $_{\rm max}$  = 7,18 общими размерами до 14×13 мм (рис. 1, 3), в гиперваскулярном образовании левого яичника до

 $SUV_{max}$  = 9,40 размерами до 25×14 мм (рис. 1), в передних отделах крыла левой подвздошной кости до  $SUV_{max}$  = 12,37 (рис. 2, 3).

При ПЭТ/КТ с <sup>18</sup>F-ПСМА-1007 определяются очаги патологического накопления: в очаговом образовании в области базальных ядер слева с  $SUV_{max}$  = 1,43, размерами до 12×5 мм (ранее по KT до 10×10 мм) и в образовании правой теменной доли с  $SUV_{max}$  = 0,78, без четкой дифференцировки по КТ (ранее до 10×9 мм), в над- и подключичных лимфоузлах справа с SUV<sub>max</sub> = 6,76, в конгломерате пекторальных лимфоузлов справа неравномерно с  $SUV_{max}$  = 4,90 размерами до 35×31 мм (ранее до 27×24 мм), в цепочке лимфоузлов вдоль аорты и НПВ с SUV<sub>max</sub> = 7,23 с распространением на левые общие подвздошные лимфоузлы с SUV<sub>max</sub> = 4,67 размерами до 7×6 мм (ранее не определялись) (рис. 2, 3), в объемном образовании левого яичника неоднородной кистозно-солидной структуры

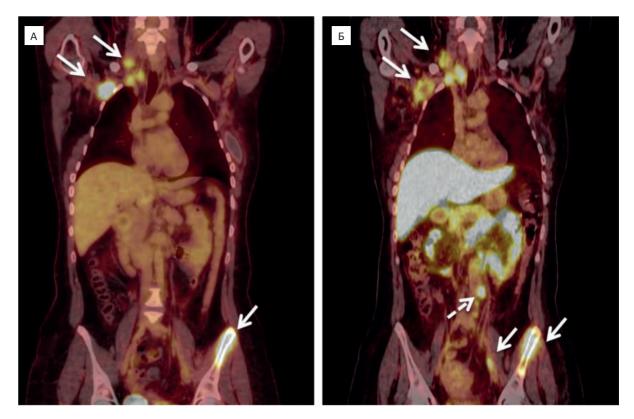



Рис. 2. Пациентка Ш. Рак левой молочной железы — состояние после комбинированного лечения. Прогрессирование: поражение костей, лимфоузлов и левого яичника. Комбинированные ПЭТ/КТ-изображения с  $^{18}$ F-ФДГ (A) и  $^{18}$ F-ПСМА-1007 (Б). Отмечается накопление обоих РФП в субпекторальных, над-и подключичных, паравазальных лимфоузлах и в левой подвздошной кости (указаны стрелками). Также определяется гиперфиксация  $^{18}$ F-ПСМА-1007 в забрюшинных лимфоузлах (указаны пунктирной стрелкой)

Fig. 2. Patient S. Left breast cancer — condition after combined treatment. Progression: damage to bones, lymph nodes and left ovary. Combined PET/CT images with <sup>18</sup>F-FDG (A) and <sup>18</sup>F-PSMA-1007 (B). The accumulation of both RPs is noted in the subpectoral, supraclavicular and subclavian, paravasal lymph nodes and in the left ilium (indicated by arrows). Hyperfixation of <sup>18</sup>F-PSMA-1007 in the retroperitoneal lymph nodes is also determined (indicated by the dashed arrow)

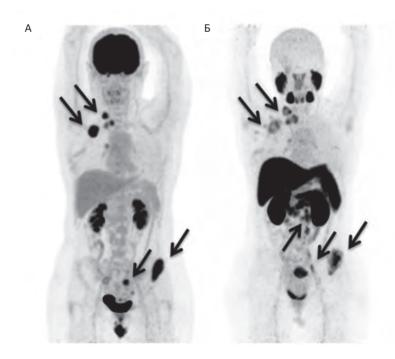



Рис. 3. Пациентка Ш. Рак левой молочной железы — состояние после комбинированного лечения. Прогрессирование, поражение костей, лимфоузлов и левого яичника. МІР (проекция максимальной интенсивности) изображение ПЭТ с <sup>18</sup>F-ФДГ (A), <sup>18</sup>F-ПСМА-1007 (Б). Отмечается множественное очаговое накопление обоих РФП

Fig. 3. Patient S. Left breast cancer — condition after combined treatment. Progression, damage to bones, lymph nodes and left ovary. MIP (maximum intensity projection) PET image with <sup>18</sup>F-FDG (A), <sup>18</sup>F-PSMA-1007 (B). Multiple focal accumulation of both RPs is noted

 $c~SUV_{max} = 10,04$ , размерами до  $53\times45~$  мм (ранее до  $25\times14~$  мм) (рис. 2) и в левой подвздошной кости  $c~SUV_{max} = 8,62~$  (рис. 2,3).

#### Заключение

Представленный клинический случай демонстрирует агрессивность течения ТНРМЖ и возможность применения ПЭТ/КТ с <sup>18</sup>F-ПСМА-1007 в качестве диагностической методики. Различные исследования показывают, что ПЭТ/КТ с <sup>18</sup>F-ПСМА-1007 может быть перспективным методом обследования при ТНРМЖ [5–7].

Могдептотh et al в своем исследовании представили обоснование эндогенной радионуклидной терапии (РНТ) с ПСМА для лечения ТНРМЖ [3]. Первый клинический пример применения РНТ при ТНРМЖ продемонстрировали Tolkach Y. et al использовав в качестве терапевтического РФП <sup>177</sup>Lu-PSMA, а для диагностики — <sup>68</sup>Ga-PSMA [8]. Однако на данный момент такие исследования немногочислены, и требуется более углубленное изучение применения ПЭТ/КТ с <sup>18</sup>F-ПСМА-1007 при ТНРМЖ [5–7].

## Список литературы / References

- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-49. DOI: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
- Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010 Nov 11;363(20):1938-48. DOI: 10.1056/NEJMra1001389. PMID: 21067385.
- 3. Morgenroth A, Tinkir E, Vogg ATJ, et al. Targeting of prostate-specific membrane antigen for radio-ligand therapy of triple-negative breast cancer. Breast Cancer Res. 2019;21:116. DOI: 10.1186/s13058-019-1205-1.
- 4. Uría JA, Velasco G, Santamaría I, et al. Prostate-specific membrane antigen in breast carcinoma. Lancet. 1997;349(9065):1601. DOI: 10.1016/s0140-6736(05)61629-7.
- Miladinova D. Molecular Imaging in Breast Cancer. Nucl Med Mol Imaging. 2019 Oct;53(5):313-9. DOI: 10.1007/ s13139-019-00614-w. Epub 2019 Oct 16. PMID: 31723360; PMCID: PMC6821902.
- Kasoha M, Unger C, Solomayer EF, et al. Prostate-specific membrane antigen (PSMA) expression in breast cancer and its metastases. Clin Exp Metastasis. 2017 Dec;34(8):479-90. DOI: 10.1007/s10585-018-9878-x. Epub 2018 Feb 10. PMID: 29426963.
- Bertagna F, Albano D, Cerudelli E, et al. Radiolabelled PSMA PET/CT in breast cancer. A systematic review. Nucl Med Rev Cent East Eur. 2020;23(1):32-5. DOI: 10.5603/ NMR.2020.0004. PMID: 32779172.
- 8. Tolkach Y, Gevensleben H, Bundschuh R, et al. Prostatespecific membrane antigen in breast cancer: a comprehensive evaluation of expression and a case report of radionuclide therapy. Breast Cancer Research and Treatment. 2018;169(3):447-55. DOI: 10.1007/s10549-018-4717-y.

#### Вклад авторов

А.В. Парнас: написание текста рукописи, получение данных для анализа, анализ полученных данных.

А.И. Пронин, А.А Оджарова: разработка дизайна исследования, обзор публикаций по теме статьи, анализ полученных данных. В.С. Ильяков, Н.А. Мещерякова: обзор публикаций по теме статьи, разработка дизайна исследования.

З.Х. Камолова, Д.И. Невзоров: разработка дизайна исследования, анализ полученных данных.

#### Author's contributions

A.V. Parnas: writing the text of the manuscript, obtaining data for analysis, analyzing the data obtained.

A.I. Pronin, A.A. Odzharova: development of research design, review of publications on the topic of the article, analysis of the data obtained.

V.S. Ilyakov, N.A. Meshcheryakova: review of publications on the topic of the article, development of research design.

Z.Kh. Kamolova, D.I. Nevzorov: research design development, data analysis.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Conflict of interests. Not declared.

Финансирование. Исследование проведено без спонсорской поддержки.

**Financing.** The study had no sponsorship.

**Информированное согласие.** Пациентка подписала информированное согласие на участие в исследовании.

**Informed consent.** Patient signed informed consent to participate in the study.

#### Сведения об авторе, ответственном за связь с редакцией

Парнас Александр Вадимович — аспирант, врач-радиолог отделения позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, eLibrary SPIN: 1797-3900. alexandrparnas@gmail.com.

### Сведения об остальных авторах статьи

Оджарова Акгуль Атаевна — к.м.н., с.н.с. отделения позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, eLibrary SPIN: 1074-3862.

Пронин Артем Игоревич — к.м.н., врач-радиолог, заведующий отделением позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, Москва eLibrary SPIN: 2833-8191.

Ильяков Вадим Сергеевич — аспирант, врач-радиолог отделения позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, vadimilakov075@gmail.com; eLibrary SPIN: 5726-0148.

Мещерякова Надежда Андреевна — к.м.н., врач-рентгенолог отделения позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, eLibrary SPIN: 9558-2761.

Камолова Замира Хусейнзода — врач-рентгенолог отделения позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, eLibrary SPIN: 1605-7458, kam.zamira@gmail.com.

Невзоров Денис Ильич — радиохимик отделения позитронной эмиссионной томографии отдела изотопной диагностики и терапии НИИ КиЭР НИМЦ им. Н.Н. Блохина Минздрава России, nevzorovdi@yandex.ru.

### **CLINICAL CASES**

# Possibilities of PET/CT with <sup>18</sup>F-PSMA-1007 in the Diagnosis of Triple Negative Breast Cancer: a Case Study

## A.V. Parnas, A.A. Odzharova, A.I. Pronin, V.S. Ilyakov, N.A. Meshcheryakova, Z.Kh. Kamolova, D.I. Nevzorov

N.N. Blokhin National Medical Research Center of Oncology; 24 Kashirskoye Highway, Moscow, Russia 115478; alexandrparnas@gmail.com

#### **Abstract**

Breast cancer (BC) is one of the most common cancers and the leading cause of cancer death in women. Triple negative breast cancer (TNBC) is a specific subtype of breast cancer that does not express estrogen receptors (ER), progesterone receptors (RP) or human epidermal growth factor receptor-2 (HER-2), has certain clinical features, a tendency to relapses and poor prognosis. Various studies demonstrate that prostate-specific antigen (PSA) is not strictly specific for prostate cancer, and can be produced by other tumor pathologies. In routine practice, PET/CT for TNBC is performed with <sup>18</sup>F-FDG. However PET/CT with <sup>18</sup>F-PSMA-1007 can be used as the method of choice with high theranostic potential. Here is a clinical case of a patient with TNBC who underwent PET/CT with <sup>18</sup>F-FDG and <sup>18</sup>F-PSMA-1007.

**Key words:** triple negative breast cancer, PET/CT, <sup>18</sup>F-FDG, <sup>18</sup>F-PSMA-1007

**For citation:** Parnas AV, Odzharova AA, Pronin AI, Ilyakov VS, Meshcheryakova NA, Kamolova ZKh, Nevzorov DI. Possibilities of PET/CT with <sup>18</sup>F-PSMA-1007 in the Diagnosis of Triple Negative Breast Cancer: a Case Study. Journal of Oncology: Diagnostic Radiology and Radiotherapy. 2021;4(4):88-92 (In Russian).

DOI: 10.37174/2587-7593-2021-4-4-88-92

#### Information about the authors:

Parnas A.V. https://orcid.org/0000-0002-2963-4176 Odzharova A.A. https://orcid.org/0000-0003-3576-6156 Pronin A.I. https://orcid.org/0000-0003-1632-351X Ilyakov V.S. https://orcid.org/0000-0002-5375-2498 Meshchreiakova N.A. https://orcid.org/0000-0003-0770-3406 Kamolova Z.H. https://orcid.org/0000-0002-4376-3978 Nevzorov D.I. https://orcid.org/0000-00032969-0191